時間:2023-02-05 00:45:08
序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇電力電子技術論文范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!
現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。
1、整流器時代
大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。
2、逆變器時代
七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。
3、變頻器時代
進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。
二、電力電子技術的應用
1、一般工業
工業中大量應用各種交直流電動機。直流電動機有良好的調速性能,給其供電的可控整流電源或直流斬波電源都是電力電子裝置。近年來,由于電力電子變頻技術的迅速發展,使得交流電機的調速性能可與直流電機相媲美,交流調速技術大量應用并占據主導地位。大至數千kW的各種軋鋼機,小到幾百W的數控機床的伺服電機,以及礦山牽引等場合都廣泛采用電力電子交直流調速技術。一些對調速性能要求不高的大型鼓風機等近年來也采用了變頻裝置,以達到節能的目的。還有些不調速的電機為了避免起動時的電流沖擊而采用了軟起動裝置,這種軟起動裝置也是電力電子裝置。電化學工業大量使用直流電源,電解鋁、電解食鹽水等都需要大容量整流電源。電鍍裝置也需要整流電源。電力電子技術還大量用于冶金工業中的高頻、中頻感應加熱電源、淬火電源及直流電弧爐電源等場合。
2、交通運輸
電氣化鐵道中廣泛采用電力電子技術。電氣機車中的直流機車中采用整流裝置,交流機車采用變頻裝置。直流斬波器也廣泛用于鐵道車輛。在未來的磁懸浮列車中,電力電子技術更是一項關鍵技術。除牽引電機傳動外,車輛中的各種輔助電源也都離不開電力電子技術。電動汽車的電機靠電力電子裝置進行電力變換和驅動控制,其蓄電池的充電也離不開電力電子裝置。一臺高級汽車中需要許多控制電機,它們也要靠變頻器和斬波器驅動并控制。飛機、船舶需要很多不同要求的電源,因此航空和航海都離不開電力電子技術。如果把電梯也算做交通運輸,那么它也需要電力電子技術。以前的電梯大都采用直流調速系統,而近年來交流變頻調速已成為主流。3、電力系統
電力電子技術在電力系統中有著非常廣泛的應用。據估計,發達國家在用戶最終使用的電能中,有60%以上的電能至少經過一次以上電力電子變流裝置的處理。電力系統在通向現代化的進程中,電力電子技術是關鍵技術之一??梢院敛豢鋸埖卣f,如果離開電力電子技術,電力系統的現代化就是不可想象的。直流輸電在長距離、大容量輸電時有很大的優勢,其送電端的整流閥和受電端的逆變閥都采用晶閘管變流裝置。近年發展起來的柔流輸電(FACTS)也是依靠電力電子裝置才得以實現的。無功補償和諧波抑制對電力系統有重要的意義。晶閘管控制電抗器(TCR)、晶閘管投切電容器(TSC)都是重要的無功補償裝置。近年來出現的靜止無功發生器(SVG)、有源電力濾波器(APF)等新型電力電子裝置具有更為優越的無功功率和諧波補償的性能。在配電網系統,電力電子裝置還可用于防止電網瞬時停電、瞬時電壓跌落、閃變等,以進行電能質量控制,改善供電質量。
在變電所中,給操作系統提供可靠的交直流操作電源,給蓄電池充電等都需要電力電子裝置。
4、電子裝置用電源
各種電子裝置一般都需要不同電壓等級的直流電源供電。通信設備中的程控交換機所用的直流電源以前用晶閘管整流電源,現在已改為采用全控型器件的高頻開關電源。大型計算機所需的工作電源、微型計算機內部的電源現在也都采用高頻開關電源。在各種電子裝置中,以前大量采用線性穩壓電源供電,由于高頻開關電源體積小、重量輕、效率高,現在已逐漸取代了線性電源。因為各種信息技術裝置都需要電力電子裝置提供電源,所以可以說信息電子技術離不開電力電子技術。
5、家用電器
照明在家用電器中占有十分突出的地位。由于電力電子照明電源體積小、發光效率高、可節省大量能源,通常被稱為“節能燈”,它正在逐步取代傳統的白熾燈和日光燈。變頻空調器是家用電器中應用電力電子技術的典型例子。電視機、音響設備、家用計算機等電子設備的電源部分也都需要電力電子技術。此外,有些洗衣機、電冰箱、微波爐等電器也應用了電力電子技術。電力電子技術廣泛用于家用電器使得它和我們的生活變得十分貼近。
現代電源技術是應用電力電子半導體器件,綜合自動控制、計算機(微處理器)技術和電磁技術的多學科邊緣交又技術。在各種高質量、高效、高可靠性的電源中起關鍵作用,是現代電力電子技術的具體應用。
當前,電力電子作為節能、節才、自動化、智能化、機電一體化的基礎,正朝著應用技術高頻化、硬件結構模塊化、產品性能綠色化的方向發展。在不遠的將來,電力電子技術將使電源技術更加成熟、經濟、實用,實現高效率和高品質用電相結合。
1.電力電子技術的發展
現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。
1.1整流器時代
大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。
1.2逆變器時代
七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。
1.3變頻器時代
進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。
2.現代電力電子的應用領域
2.1計算機高效率綠色電源
高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。
計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日"能源之星"計劃規定,桌上型個人電腦或相關的設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。
2.2通信用高頻開關電源
通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。
因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
2.3直流-直流(DC/DC)變換器
DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。
2.4不間斷電源(UPS)
不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。
現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。
2.5變頻器電源
變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。
國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。
2.6高頻逆變式整流焊機電源
高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。
逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。
由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。
國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29kg。
2.7大功率開關型高壓直流電源
大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。
自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。
國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。
2.8電力有源濾波器
傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂"電力公害",例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。
電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。
2.9分布式開關電源供電系統
分布式電源供電系統采用小功率模塊和大規??刂萍呻娐纷骰静考?利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。
八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。
分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。
3.高頻開關電源的發展趨勢
在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。
3.1高頻化
理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統"整流行業"的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為"開關變換類電源",其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。
3.2模塊化
模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于"標準"功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了"智能化"功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了"用戶專用"功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。3.3數字化
在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。
3.4綠色化
電源系統的綠色化有兩層含義:首先是顯著節電,這意味著發電容量的節約,而發電是造成環境污染的重要原因,所以節電就可以減少對環境的污染;其次這些電源不能(或少)對電網產生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節電設備,往往會變成對電網的污染源:向電網注入嚴重的高次諧波電流,使總功率因數下降,使電網電壓耦合許多毛刺尖峰,甚至出現缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數的方法。
總而言之,電力電子及開關電源技術因應用需求不斷向前發展,新技術的出現又會使許多應用產品更新換代,還會開拓更多更新的應用領域。開關電源高頻化、模塊化、數字化、綠色化等的實現,將標志著這些技術的成熟,實現高效率用電和高品質用電相結合。這幾年,隨著通信行業的發展,以開關電源技術為核心的通信用開關電源,僅國內有20多億人民幣的市場需求,吸引了國內外一大批科技人員對其進行開發研究。開關電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產值需求的電力操作電源系統的國內市場正在啟動,并將很快發展起來。還有其它許多以開關電源技術為核心的專用電源、工業電源正在等待著人們去開發。
參考文獻:
1.2為課程群建設、產學研相結合的進一步探索研究奠定基礎電力電子技術已逐步發展成為一門由現代控制理論、材料科學、電機工程、微電子技術多學科相互滲透的綜合性技術學科。通過課程改革,為電力電子技術精品課程建設、課程群建設奠定良好基礎。此外,通過課程改革,探索適用于我校的電類專業卓越工程師特色培養模式,并促進教科研和企業項目合作與承接等工作的深入開展。
2教學改革方案的實施與主要特色
為努力改變該課程原有的難教難學的狀況,教學改革方案從以下幾個方面實施:
2.1重新編排教學內容,突出課程實用性和趣味性改變傳統教學中對四大變流電路孤立、單一的學習模式,引入生活中常見電路以及電子小制作的實例,通過一系列具體電路系統設計過程的演示,將《模擬電路》、《電機與電氣》等前期專業課程的知識與《電力電子技術》所學理論知識相聯系,展現課程強弱電結合、多學科融合的特點。并且,在保證理論基礎扎實前提下,增加日常電路分析和設計實踐環節在整個教學過程中所占比重,以實例激發學生自主學習興趣,以興趣帶動能力培養,在這一過程中培養學生的讀圖、分析、畫圖、簡單電源電路設計等能力,實現理論與應用相輔相成、有機結合,最終提升學生工程應用方面的綜合素質。
2.2采用引導型教學方式,注重教學過程中的互動性和學生分析解決問題能力的培養授課過程中注意開展互動,通過采用提出啟發性問題—共同討論—獲得結論—實驗驗證的方法,在教師“教”與學生“學”的過程中不斷發現問題和新的突破點,將學生被動接受知識的過程轉化為其不斷解決問題的過程,使學生主動學習、開放思維,并在此過程中加深相關理論的理解,訓練其分析和解決問題的能力。
2.3充分發揮多媒體教學優勢,改變理論教學抽象、刻板的現狀電力電子技術重視對電路波形的分析。課程原有的單一的板書或簡單PPT課件加板書的傳統授課形式課堂信息量較少,不夠直觀,不能解決學生缺乏學習興趣,接收效果較差等問題。利用PowerPoint、Flash、視頻等多媒體手段,不僅能使波形分析更為直觀,還能方便地展示電路在不同條件下的工作狀態,以及課程內容在實際生產中的應用。既可使教學內容更加豐富,還使分析過程不再枯燥抽象,分析結果生動醒目,便于學生理解。
2.4以實際系統分析為手段,提高學生知識融會貫通的能力改變對變流技術中各典型電路孤立的講解,通過帶領學生進行典型的電力電子系統分析,結合系統供電、控制等模塊電路結構、原理的介紹,體現該門課程電力、電子和控制學科間的交叉性,使學生學會將與課程相關的專業課內容靈活運用于電路分析和設計應用中,提高他們對所學知識的融會貫通能力。
2.5引入專業常用仿真軟件,激發學生學習興趣,培養基本專業技能專業仿真軟件在現代工業設計及應用中的作用越來越顯著,掌握一至兩種仿真軟件工具將成為工科學生應具備的基本素質之一。同時,在教學過程中,利用仿真軟件對電路工作情況進行仿真,可以使分析過程更為直觀,有利于激發學生學習興趣。目前,電力電子仿真軟件主要有Matlab、Pspice、SIMetrix/SIMPLIS和Saber等,其中Pspice和Matlab在開關電源開發應用中具有重要作用,被相關企業廣泛運用[4]。在教學改革中,通過在課堂教學和實驗環節中引入建模的基本原理與過程,既能使課堂教學和實驗更加生動直觀與安全,還能引導學生學習軟件的應用,使他們具備基礎建模能力,有助于滿足企業對于學生基本專業技能的要求。
2.6開發一批設計性、綜合性研究實驗,培養學生的應用、創新能力利用學校電力電子實驗室和軟件仿真的資源,結合當前熱門課題和企業需求,開發一些設計性、綜合性較強的實驗,或通過課程設計、畢業設計的方式指導帶領學生進行研究設計。實驗的開發以培養學生應用創新能力為主要目的,既有助于學生鞏固所學知識,提高知識綜合運用能力,又可為電子設計大賽等專業比賽人才選拔奠定基礎。
2.7以課程改革為契機,積極拓展校企合作途徑,開發產學研項目,提升教師科研水平在課程改革中,積極尋求校企合作的新途徑,深化校企合作的內容,將企業實際項目作為教學的實踐、提升環節,依托學校的實驗實訓中心,以教師為主導,學生進行設計、驗證配合,不僅可以極大地激發學生學習和實踐的興趣,同時也有利于教師自身科研水平的提高。
2電力電子技術在現階段的實際應用探究
2.1電力電子技術在交通運輸中的實際應用
新時期電力電子技術得到了迅速發展過程中,已經在諸多的領域有了應用,其中在電氣化的鐵道交通當中就對電力電子技術有了廣泛應用,在電氣機車當中的直流機車就是對整流裝置進行的應用,而交流機車方面就是對變頻裝置進行的應用。另外,在磁懸浮列車當中的電力電子技術的應用比較關鍵,有著諸多的地方需要電力電子技術的支持才能夠使得磁懸浮列車得以順利的運行,不僅在牽引電機傳動方面,在各種的輔助電源方面也需要這一技術的支持。而在電動汽車的電機方面也是需要電子裝置對電力進行轉換才能夠起到控制驅動的作用。在船舶以及飛機等對電源的使用也有著很大的不同,所以在對電力電子技術的應用上也比較的關鍵。
2.2電力電子技術在家用電器中的實際應用
新時期電力電子技術在人們日常生活中的家用電器方面的應用也比較的廣泛,這對人們的生活提供了很大的方便,其中洗衣機是生活中常用的家用電器,在電力電子技術的應用下能夠代替人工工作,只需要將衣服放進洗衣機按下按鈕,就能夠通過電力電子技術的功能支持完成整整個洗衣的過程。還有就是在廚房洗碗機家用電器的電力電子技術的應用上和洗衣機的原理類似,在空調器的電力電子技術的應用上能夠起到節能作用,實踐證明能夠節約30%的電能,而電頻熒光燈在工作效率上要比普通的能的效率高很多。
2.3電力節能中的電力電子技術的實際應用
在我國的經濟得到迅速發展的過程中,也在能源的消耗上付出了很大的代價,尤其是在電力能源的消耗上比較嚴重。當前的工業和電力的結合已經成了發展的必需條件,所以在電力能源的消耗上逐漸的增加,主要就是由于電力能源而對穩定以及利用率高等諸多優點。從我國整體的工業發展情況來看,在工業的用電方面還存在著一些不合理的情況,尤其是在用電的效率上得不到有效提高,從而造成了嚴重浪費的現象,在當前的可持續發展理念深化背景下節約電力能源是可持續發展理念實踐的一個內容,通過對電力電子技術的實際應用能夠有效的將電源的消耗程度有效的降低,在電力電子技術的作用下,能夠對電力設備得到性能上的優化以及節約原材料的使用,這樣就能夠最大化的對電力能源進行節約。
2.4電力電子技術在發電環節中的實際應用
隨著我國對新能源的開發利用,例如風力發電以及水力發電等,這其中就涉及到發電機的電流頻率的變換,水力發電功率要取決于水頭壓力以及流量,而這對機組的最佳轉速變化也會產生影響,為能夠將最大的有效功率得以實現,就需要通過調整轉子勵磁電流頻率促進機組的變速運行。另外在大型的發電機相對靜止勵磁控制方面正是采用的晶閘管整流自并勵的方式,省去了勵磁機中間的慣性環節。
二、仿真教學過程實例分析
由于電力電子技術課程中的各種電路形式復雜多樣,因此以三相橋式全控整流電路為例,來說明電力電子技術的仿真教學過程。三相橋式全控整流電路在工業生產中具有重要位置,大量用于電解、電鍍、直流電機傳動、勵磁等場合,因此該電路是電力電子技術課程的重點內容。三相橋式全控整流電路為如上所述教材的3.2.2節內容,主要包括電路原理圖、電阻性負載、阻感性負載工作情況三部分內容。該節課程的知識目標定位于掌握三相橋式全控整流電路的組成、特點及應用,理解三相橋式全控整流電路的工作原理;能力目標定位于能夠根據電路圖搭建相應電路并進行測量,同時能夠根據任務要求開展相關實驗。該節課程的仿真教學過程中首先讓學生掌握電路結構,然后針對不同負載情況下,讓學生理解工作原理并學會波形分析及參數定量計算,最后結合“自動控制原理”及“電機學”課程相關內容,給出仿真實驗任務,目的讓學生逐步進入狀態,逐步掌握學習這門課的方法,下面給出仿真教學中需要注意的教學重點,其它教學部分可參考相應教材,這里不再贅述。
1.三相橋式全控整流電路結構該部分首先介紹三相橋式全控整流電路是目前應用最廣泛的整流電路,它區別于單相整流與三相半波整流,具有功率大、直流脈動小等優點,同時采用幻燈片播放實際應用案例的形式,來增強學生對該部分內容的感性認識,并提高學生的學習興趣。其次,介紹該電路中包含六個晶閘管元件,是目前學習中器件最多的電路,需要學生們認真理解六個晶閘管器件的觸發工作過程。再次,采用MATLAB仿真軟件搭建三相橋式全控整流電路原理圖,如圖1所示。搭建的過程中,一定要強調以下幾點:①晶閘管器件編號務必為共陰極組內VT1、VT3、VT5,共陽極組內VT4、VT6、VT2;②晶閘管門極觸發脈沖順序務必為VT1-VT6;③晶閘管觸發脈沖相位間隔60度。
2.帶電阻性負載情況分析前面講解完三相橋式全控整流電路搭建后,真正進入到電路工作原理、波形分析及定量計算部分。進一步完善上面仿真電路原理圖,將負載選擇為電阻性負載,并增加若干示波器觀察點,其中三相電源設置為幅值100V、頻率50Hz,電阻負載2Ω,仿真參數設置為仿真起始時間0.0s,結束時間0.1s,算法選擇ode23tb。帶電阻性負載情況下的教學重點為:①不同觸發角下的波形分析;②負載電流的連續與斷續分析;③晶閘管的單觸發脈沖與雙觸發脈沖形式。其中難點內容為連續與斷續狀態下的脈沖形式。首先通過仿真詳細講解30度觸發角時的波形情況,要求學生在給定電源條件下能夠正確理解觸發脈沖、直流負載電壓、直流負載電流、晶閘管承受電壓和交流電源電流的波形。講授過程中需要注意:①觸發角的觸發時刻,由于三相整流電路的自然換相點對應A相電壓波形的30度位置,因此30度觸發角情況下的晶閘管VT1觸發時刻為60度位置,換算成時間為0.0033s;②將整個電源周期分成6段,每段先確定6個晶閘管的導通與關斷狀態,再分析其他電量;③特別注意強調線電壓波形及波形畫法。然后,利用仿真教學的優勢進一步講解如上教學重點要求,如圖3所示為60度和90度觸發角下的晶閘管觸發脈沖情況和直流輸出電壓波形情況。圖中可以清楚的看到60度觸發角為負載電壓和電流連續與斷續的臨界點,90度觸發角時清楚的看到負載電流為斷續狀態,同時各個觸發脈沖為保證電流斷續下正常工作而變成雙觸發脈沖形式。為了讓學生能夠更深入的理解電阻性負載時的工作情況,在仿真教學過程中,可以采取更小的脈沖角度間隔對多個觸發角進行多次仿真,這樣更能深入理解隨著觸發角的增加,直流負載電壓不斷降低的過程。
3.帶阻感性負載情況分析當三相橋式全控整流電路帶阻感性負載工作時,其特點就是能保證負載電流續流而不出現斷續的狀態,因此該部分的教學重點為:①讓學生能夠清楚的理解整個移相范圍內負載電流總是連續的工作狀態;②由于電感的作用,負載電壓會出現負的部分;③大電感狀態下,負載電流近似為一條直線。圖4為觸發角為90度時三相橋式全控整流電路的波形情況,與圖3中觸發角為90度情況進行對比,可以清楚的看出阻感性負載時的直流負載電壓波形既有正向波形,又有負向波形,負載電流波形始終處于連續狀態,同時還可以通過仿真教學清楚的展示電感為5mH和200mH時的直流電流波形,其中5mH時電流波形脈動較大,而200mH時電流波形脈動較小,近似為一條直線,這也充分說明當電感值為200mH時,感抗相對于阻抗來說充分大。
4.仿真實驗任務:直流電機閉環調速系統完成如上規定的仿真教學任務后,可以給學生布置相應的仿真實驗任務,結合直流電機原理和閉環控制原理,安排直流電機閉環調速系統的仿真實驗,可以安排在實驗課中完成或課后自行完成。仿真實驗任務如下:(1)仿真參數設置:仿真起始時間0.0s,結束時間5s,算法選擇ode23tb。(2)系統要求跟蹤恒值速度給定500r/min。(3)轉速調節器設定為比例控制,要求分析不同負載轉矩、不同轉速比例調節下的電機電壓、電流和轉速波形。這里給出用于教學參考的系統仿真結構圖及電機電壓和電流波形,如圖5和圖6所示。由于直流電機為阻感性負載,因此通過仿真實驗可以更深入的認識阻感性負載下的三相橋式全控整流電路的工作過程,直流負載電壓即電機供電電壓有正負波形,直流負載電流即電機電樞電流為連續狀態且近似為一條直線,轉速波形由學生在仿真實驗中自行觀察。
電力電子器件主要是由一些半導體半控器件和全控器件組,主要有IGBT、BJT、MOSMOSFET、GTR等組成。成為了滿足廣大需求、適應復雜多變的惡劣自然天氣、自然災害,生產出質量高、性能好的電壓和電流,要求電力電子器件具有可靠性高,抗干擾能力強,溫度穩定性高并且有一定的電氣隔離能力,能承受短暫的高電壓強電流。電子器件所控制得智能電網應該有自愈性、安全性、交互性、經濟性、優質高效、清潔環保市場化程度高。
1.2在風力發電與太陽能發電中的應用
太陽能發電系統由太陽能電池陣列、控制器、蓄電池、逆變器、用戶即照明負載等組成。其中,太陽能電池組件和蓄電池為電源系統,控制器和逆變器為控制保護系統,負載為系統終端,在太陽能的利用上同樣面臨這類似的問題,光伏發電系統主要以電源方式并入電網,其輸出系統的電力跟蹤電網電壓電流相位變化,同時調整輸出電流幅值的大小,使光伏系統注入電網中的功率最大,為了彌補光伏發電系統在功率上的波動,還需要通過控制器對蓄電池的雙向充放電,以保證向電網輸送平穩的電壓電流,和規定的相位,使電網得到純凈的高質量電力。
1.3超高壓直流輸電技術在智能電網的應用
超高壓直流輸電技術在遠距離大容量輸電、異步聯網、海底電纜送電等方面具有優勢,因而得到了廣泛應用。而特高壓直流輸電更可以有效節省輸電走廊,降低系統損耗,提高送電經濟性,它為我國解決能源分布不均、優化資源配置提供了有效途徑。截至2009年,我國已建成7個超高壓直流輸電工程和2個直流背靠背工程,直流輸電線路總長度達7085km,輸送容量近20GW,線路總長度和輸送容量均居世界第一。預計到2020年,我國將建成“強交強直”的特高壓混合電網和堅強的送、受端電網,預計直流工程達50項,其中規劃建設30多個特高壓工程,包括5個±1000kV的直流工程。
1.4SVC在智能電網的應用
SVC是一種比較典型的電力電子控制技術,在電網應用中發揮著重要作用,它具有許多作用,可以調節電力系統的電壓從而保證其穩定,并通過控制無功潮流來增加系統輸送點的能力,提供無功功率給直流換流器,提高電力系統的暫態穩定性和靜態穩定性,還可以加強對電力系統低頻振蕩的阻尼。SVC技術是提高我國電力系統穩定性,解決電網輸配電存在的不足之處的一個非常重要的技術,它具有優化潮流和無功補償的功能,可以有效改善電網的電能質量,提高電網的穩定性、安全性和輸電的能力、效率。
1.5在電力分配上的作用
電網應該能滿足所有用戶的要求,特別是國家電網應該不允許出現這樣的缺陷,電網所面臨的用戶多種多樣,包括了普通家庭,醫院,工廠,城市照明等,當電力通過電網輸送到用戶的面前時,還需要電網根據不同客戶的要求輸出合適的頻率、幅值、相位,在面臨雷擊、短路、及自然災害的情況下應該任然能維持電網的平衡穩定,積極滿足用戶的需求。如今。城市用電迅速增長,原來的架空電網的供應已經不能滿足用戶的需求,在交流的長距離出送中,需要添加電力電子設備,對電網缺失進行補充,增加電力電子設備環節對供電系統起著越來越重要的的作用。
一、前言
電力電子技術是一個以功率半導體器件、電路技術、計算機技術、現代控制技術為支撐的技術平臺。經過50年的發展歷程,它在傳統產業設備發行、電能質量控制、新能源開發和民用產品等方面得到了越來越廣泛的應用。最成功地應用于電力系統的大功率電力電子技術是直流輸電(HVDC)。自20世紀80年代,柔流輸電(FACTS)概念被提出后,電力電子技術在電力系統中的應用研究得到了極大的關注,多種設備相繼出現。本文介紹了電力電子技術在發電環節中、輸電環節中、在配電環節中的應用和節能環節的運用。
二、電力電子技術的應用
自20世紀80年代,柔流輸電(FACTS)概念被提出后,電力電子技術在電力系統中的應用研究得到了極大的關注,多種設備相繼出現。已有不少文獻介紹和總結了相關設備的基本原理和應用現狀。以下按照電力系統的發電、輸電和配電以及節電環節,列舉電力電子技術的應用研究和現狀。
(一)在發電環節中的應用
電力系統的發電環節涉及發電機組的多種設備,電力電子技術的應用以改善這些設備的運行特性為主要目的。
1大型發電機的靜止勵磁控制
靜止勵磁采用晶閘管整流自并勵方式,具有結構簡單、可靠性高及造價低等優點,被世界各大電力系統廣泛采用。由于省去了勵磁機這個中間慣性環節,因而具有其特有的快速性調節,給先進的控制規律提供了充分發揮作用并產生良好控制效果的有利條件。
2水力、風力發電機的變速恒頻勵磁
水力發電的有效功率取決于水頭壓力和流量,當水頭的變化幅度較大時(尤其是抽水蓄能機組),機組的最佳轉速便隨之發生變化。風力發電的有效功率與風速的三次方成正比,風車捕捉最大風能的轉速隨風速而變化。為了獲得最大有效功率,可使機組變速運行,通過調整轉子勵磁電流的頻率,使其與轉子轉速疊加后保持定子頻率即輸出頻率恒定。此項應用的技術核心是變頻電源。
3發電廠風機水泵的變頻調速
發電廠的廠用電率平均為8%,風機水泵耗電量約占火電設備總耗電量的65%,且運行效率低。使用低壓或高壓變頻器,實施風機水泵的變頻調速,可以達到節能的目的。低壓變頻器技術已非常成熟,國內外有眾多的生產廠家,并不完整的系列產品,但具備高壓大容量變頻器設計和生產能力的企業不多,國內有不少院校和企業正抓緊聯合開發。
(二)在輸電環節中的應用
電力電子器件應用于高壓輸電系統被稱為“硅片引起的第”,大幅度改善了電力網的穩定運行特性。
1直流輸電(HVDC)和輕型直流輸電(HVDCLight)技術
直流輸電具有輸電容量大、穩定性好、控制調節靈活等優點,對于遠距離輸電、海底電纜輸電及不同頻率系統的聯網,高壓直流輸電擁有獨特的優勢。1970年世界上第一項晶閘管換流器,標志著電力電子技術正式應用于直流輸電。從此以后世界上新建的直流輸電工程均采用晶閘管換流閥。
2柔流輸電(FACTS)技術
FACTS技術的概念問世干20世紀80年代后期,是一項基于電力電子技術與現代控制技術對交流輸電系統的阻抗、電壓及相位實施靈活快速調節的輸電技術,可實現對交流輸電功率潮流的靈活控制,大幅度提高電力系統的穩定水平。
20世紀90年代以來,國外在研究開發的基礎上開始將FACTS技術用于實際電力系統工程。其輸出無功的大小,設備結構簡單,控制方便,成本較低,所以較早得到應用。
(三)在配電環節中的應用
配電系統迫切需要解決的問題是如何加強供電可靠性和提高電能質量。電能質量控制既要滿足對電壓、頻率、諧波和不對稱度的要求,還要抑制各種瞬態的波動和干擾。電力電子技術和現代控制技術在配電系統中的應用,即用戶電力(customPower)技術或稱DFACTS技術,是在FACTS各項成熟技術的基礎上發展起來的電能質量控制新技術??梢詫FACTS設備理解為FACTS設備的縮小版,其原理、結構均相同,功能也相似。由于潛在需求巨大,市場介入相對容易,開發投入和生產成本相對較低,隨著電力電子器件價格的不斷降低,可以預期DFACTS設備產品將進入快速發展期。
(四)在節能環節的運用
1變負荷電動機調速運行
電動機本身挖掘節電潛力只是節電的一個方面,通過變負荷電動機的調速技術節電又是另一個方面,只有將二者結合起來,電動機節電方較完善。目前,交流調速在冶金、礦山等部門及社會生活中得到了廣泛的應用。首先是風機、泵類等變負荷機械中采用調速控制代替擋風板或節流閥控制風流量和水流量具有顯著的效果。國外變負荷的風機、水泵大多采用了交流調速,我國正在推廣應用中。
變頻調速的優點是調速范圍廣,精度高,效率高,能實現連續無級調速。在調速過程中轉差損耗小,定子、轉子的銅耗也不大,節電率一般可達30%左右。其缺點主要為:成本高,產生高次諧波污染電網。
2減少無功損耗,提高功率因數
“循環互輔”實踐教學方法建立在“建構主義的學習觀”的基礎上,建構主義的學習觀認為:知識不能簡單地通過教師傳授得到,而是每個學生在一定的情境下通過自主探索、小組協作等學習方式,達到對所學知識意義的主動建構。傳統的電力電子技術實踐教學,學生的自主學習能力沒有得到有效培養。因此,探索新的實踐教學方法具有十分重要的意義?!把h互輔”即老師分項目分別輔導N個學生,然后由學生分項目相互循環輔導。“循環互輔”實踐教學方法主要分以下步驟進行:
1)調整優化教學內容,教師在授課前對教學內容要認真篩選,注意課程體系的前后銜接,理論夠用原則,降低理論的難度,以應用為主線,精心選擇N個教學項目。
2)根據學生的興趣特點和基礎,由學生自主選擇自己負責的項目,選擇同一項目的同學為一組,把全班同學分成N組。針對每個項目,教師輔導負責該項目的一組學生。
3)經教師培訓后的項目負責人指導其他同學完成該項目,教師監控各個項目的完成情況,及時解決項目負責人無法解決的問題,保證項目順利進行。實踐教學過程中,教師多采用啟發式進行指導,主要是多引導,多啟發,提出分析問題的方法,指出解決問題的途徑,讓學生通過獨立思考和小組合作,找出解決問題的具體方案,并在實踐中加以檢驗,提高學生分析問題和解決問題的能力。
4)為了保證“循環互輔”實踐教學方法順利進行,需要改革原有的課程考核評價方式,課程評價主體和評價內容應多元化,評價方式應多樣化,可構建“教師評價、學生自評、學生互評”相結合的評價機制。在學生考核評價中,應全面客觀地反映學生的真實情況,重點考核與評價學生的職業技能和職業素質,對學生的學習態度、學習能力、溝通與合作能力、創新精神等進行全面考察。堅持過程性評價和結果性評價相結合,過程性評價是在學生自主學習過程中對學生的學習態度、日常表現等各方面情況進行的評價,結果性評價是學生學習完成后對學生整體技能情況的評價。
1.2“循環互輔”實踐教學方法在電力電子技術課程中的具體應用
下面從教學項目的選取和實踐教學過程的實施兩個方面探討“循環互輔”實踐教學方法在電力電子技術課程中的具體應用。
1)隨著電力電子新器件的不斷涌現以及各種變流電路的不斷發展,電力電子技術課程的教學內容日益增長,在學時有限的情況下,以電力電子技術應用最廣泛的實際案例為載體,設計了以下六個項目作為教學內容:
(1)單相半波整流調光燈電路;
(2)單相橋式全控整流調光燈電路;
(3)單相交流調壓調光燈電路;
(4)同步電機勵磁電源電路;
(5)開關電源電路;
(6)中頻感應加熱電源電路。
2)根據學生的興趣特點和基礎,由學生自主選擇自己負責的項目,選擇同一項目的同學為一組,把全班同學分成6組。以單相半波整流調光燈電路為例,教師負責輔導選擇該項目的7-8個學生。再由這些學生負責指導班上其余同學完成該項目。教師監控各個項目的完成情況,及時糾正錯誤。
3)循環互輔實踐教學方法,不僅要求學生自己學會,還要教會別人。這就要求學生對自己選擇的項目需要進行大量的準備工作。教師利用大學城空間,建設電力電子技術空間資源課程,包括多媒體課件、參考教材、各種變換電路的仿真模型及仿真參數設置實例,實驗指導、各章習題及其學習指導等。學生進入教師空間后,可自主開展學習,通過發表評論在線分享學習心得,通過電力電子技術交流群組與教師、同學進行在線交流?!把h互輔”實踐教學方法在電力電子技術課程中的應用實踐表明:
(1)實踐教學過程中,由于每位同學都得到了充分有效指導,因此故障率、儀器設備損壞率降低了。
(2)該方法最大限度地調動了學生學習的積極性和主動性,發展每一個學生的優勢潛能,有效培養了學生自主學習和分析問題解決問題的能力,取得了較好的教學效果。
二、加強課程建設,精心、合理選擇教學內容
1.了解相關課程之間的分工。知識是相互聯系、相互滲透的。在開課前,熟悉本課程與相關學科的聯系,了解先修課“電路”和“電子技術基礎”兩門課程的教學情況和后續課“變頻調速技術”的安排,處理好他們之間的關系,保持整個專業課程體系前后銜接,避免內容的重復和疏漏。例如“自關斷器件”一章節,電子技術基礎中已講過小功率晶體管、場效應管的結構、原理、特性及應用。在本門課程中,對功率晶體管、功率場效應管應重點講述其與小功率管的不同之處。對于晶閘管直流電動系統部分,重點應在整流、有源逆變兩種狀態下,電流連續、斷續時的電動機特性,而直流可逆調速系統的內容則需放到后續課程“變頻調速技術”中。
2.以器件、電路、應用為主線,加強基礎知識的學習。以開關方式工作的電力半導體器件是現代電力電子技術的基礎核心。電力電子器件的基礎之一是能以小信號輸入控制很大的輸出,這就使電力電子設備成為強弱電之間的接口的基礎。講解器件原理及特性,目的是為了應用器件組成電路,故應掌握器件外部特性、極限參數和使用注意事項。三方面的內容應以電路為主,學習各類電力半導體器件所構造各種功率變換電路時,學生應掌握功率變換主電路的構成、工作原理和工作波形,不同負載對電路工作特性的影響以及主電路的元件參數計算和選擇。
3.介紹學科前沿發展的動向,反映本學科和相鄰學科的新成果、新進展。無電網污染、無電磁干擾、節能省電等綠色指標是全球范圍內的熱門話題。由于很多電力電子裝置結構相當復雜,為簡化設計而出現的集功率開關、變換控制電路、傳感控制電路為一體的智能功率集成模塊受到歡迎,厚膜集成模塊、積木式的功能模塊,靈活機動既能單獨使用,也能相互組合成較大的系統,成為電力電子技術的發展方向。教學內容應主動吸收最新信息,同時引導學生了解電力電子技術的發展動態,擴大知識面,這可通過指導學生閱讀與電力電子技術有關的學術期刊,登陸相關的專業網站,使學生了解自己目前所學知識在本領域所處的位置,從而站在較高的起點上,去適應學科未來發展的需要。
三、改革教學方法,形成以能力培養為主線的課程特色
《電力電子技術》是一門理論包含實踐的課程,根據其自身的特點,課程的內容設計應注重“講”“練”。多年來,電力電子技術課程的教學方法是以教師為中心的,逐章逐節不厭煩地講授,講得過多、過細,以求“當堂弄懂”“課上解決”。這樣只是傳授,學生總是處于被動接受的地位,極大地妨礙了學生學習的主動性和積極性的發揮,不利于學生的素質和能力的培養。而實現教學現代化是加大授課信息量,節約課時,增強教學效果的重要措施。為改變這種情況,首先,教師在課前注意調查學生的學習基礎,合理安排教學內容。而在教學中力求突出內容的重點和難點,但又要保證內容的系統性、完整性,并精選一部分內容留給學生去自學,寫報告,然后開展課堂討論,同時,結合學生看到的一些與電力電子技術有關的現象,讓學生設計主電路,畫出波形圖。四、加強實踐環節,注重綜合能力培養
電力電子技術有很強的實踐性,而實驗是培養理論聯系實際、動手能力、嚴謹的科學態度和科學研究方法的重要手段,因此應精選最基本的也有較高實用價值的實驗項目。例如選擇在計算機、通訊設備及家用電器等廣泛應用的開關電源作為實驗項目,介紹典型的開關電源的線路,比較開關電源和線性電源的性能,使學生對開關電源有了深刻的印象,并增強了學習電力電子技術課程的興趣。由于電力電子電路具有強、弱電結合的特點,要特別強調實驗操作的認真、規范,保證實驗順利進行,避免事故發生。實驗前,要求學生根據實驗名稱及預習要求進行預習,從而在觀察現象和發現問題等方面充分發揮主觀能動性。實驗過程中,注意考察每個學生的實際動手能力,針對性提出線路連接和實驗現象方面的問題。讓學生邊做邊答,防止學生機械接線,使實驗走過場。注意介紹新儀表、新儀器的使用,例如數字式示波器的使用,這樣學生會直接感受到科技發展帶來的巨大方便。
計算機仿真是使用計算機對已經存在或正在設計的對象的模型進行研究,具有精度高、重復性好等特點,是進行科學研究的重要手段之一?,F在出現了大量的仿真軟件,將電子仿真設計軟件PSPICE和科學計算軟件MATLAB等引入到電力電子技術教學中,讓學生按研究的側重面或實際需要對實際對象進行簡化提煉,而不是原型的復現,這樣有利于抓住其本質或主要矛盾,對所學理論有深刻的理解,也為學生今后從事工程設計和科學研究打下良好的基礎。
在課程結束前安排一周的課程設計,可將電力電子技術及其他先修課程(電工基礎、電子技術、電機學等)中所學到的理論和實踐知識全面地結合起來,同時培養和提高學生自我獲取知識的能力。課程設計的內容應具有一定的系統性、新穎性。教師要發揮指導作用,指導學生閱讀參考文獻,審閱設計方案,檢查設計進度,及時指導和幫助其解決存在的問題,逐步培養學生的獨立工作能力、設計技能和建立正確的設計思想,重視學生的具有創新精神的見解。
五、結束語
電力電子技術課程的教學改革是一項系統工程,其學術性和技術性較強,涉及面很廣。而教學改革是一項長期而艱巨的任務,我們只有不斷積極探索教學內容、教學方法,充實自己,以適應當今社會的需要。
【摘要】本文介紹了“電力電子技術”課程的教學方法改革。研究、探索和實踐與教學體系相適應的實踐教學模式、教學方法和教學手段。提出了全方位教學的改革與實踐的新思路,為社會培養具有創新精神的高素質技術應用型人才。
【關鍵詞】電力電子技術教學方法教學改革
參考文獻:
2增加課程設計環節
學生在完成基本實驗后可參加課程設計,并在課程設計過程中發現問題,學生需要通過自學相關內容才可以設計出方案,課程設計是在整個學習過程中的綜合實踐,是實驗教學的重要環節.以往電力電子技術教學過程中沒有課程設計,部分學生學完課程后,僅僅知道書本上的一些原理知識,對于電力電子技術的實際應用并不了解.課程設計可以是3~4名學生做一個專題,學生相互合作完成設計題目.由于時間的限制,課程設計要求用仿真軟件仿真出結果.通過課程設計促使學生把電力電子技術及其它課程的理論知識相融合,使學生認識到課程之間的知識點是相互聯系的,進而培養學生分析實際問題的綜合能力.
3利用仿真軟件增加虛擬實驗
電力電子技術實驗教學用到的是各功率器件,三相交流電源與示波器等,其成本高昂且具有危險性.可以在電力電子技術實驗中引入計算機仿真,把電子仿真軟件PSPICE和MATLAB引入到電力電子技術實驗中,不僅可彌補實驗設備數量不足的缺點,還不用擔心實驗設備損壞和人身安全問題.仿真實驗沒有時間與地點的限制,學生也可在課外用計算機仿真,從而克服了實驗課時有限的不足.計算機仿真是使用仿真軟件對被控對象的數學模型進行仿真,直觀地顯示電路的工作狀態與系統波形,可以起到虛擬實驗的教學目標,計算機仿真的優點是精度高和重復性好.讓學生按照課題設計的重點和需要對實際模型進行建模,這樣有利于學生加深所學的理論知識,而且為學生將來從事工程設計打下基礎.
一、前言
電力電子技術是一個以功率半導體器件、電路技術、計算機技術、現代控制技術為支撐的技術平臺。經過50年的發展歷程,它在傳統產業設備發行、電能質量控制、新能源開發和民用產品等方面得到了越來越廣泛的應用。最成功地應用于電力系統的大功率電力電子技術是直流輸電(HVDC)。自20世紀80年代,柔流輸電(FACTS)概念被提出后,電力電子技術在電力系統中的應用研究得到了極大的關注,多種設備相繼出現。本文介紹了電力電子技術在發電環節中、輸電環節中、在配電環節中的應用和節能環節的運用。
二、電力電子技術的應用
自20世紀80年代,柔流輸電(FACTS)概念被提出后,電力電子技術在電力系統中的應用研究得到了極大的關注,多種設備相繼出現。已有不少文獻介紹和總結了相關設備的基本原理和應用現狀。以下按照電力系統的發電、輸電和配電以及節電環節,列舉電力電子技術的應用研究和現狀。
(一)在發電環節中的應用
電力系統的發電環節涉及發電機組的多種設備,電力電子技術的應用以改善這些設備的運行特性為主要目的。
1大型發電機的靜止勵磁控制
靜止勵磁采用晶閘管整流自并勵方式,具有結構簡單、可靠性高及造價低等優點,被世界各大電力系統廣泛采用。由于省去了勵磁機這個中間慣性環節,因而具有其特有的快速性調節,給先進的控制規律提供了充分發揮作用并產生良好控制效果的有利條件。
2水力、風力發電機的變速恒頻勵磁
水力發電的有效功率取決于水頭壓力和流量,當水頭的變化幅度較大時(尤其是抽水蓄能機組),機組的最佳轉速便隨之發生變化。風力發電的有效功率與風速的三次方成正比,風車捕捉最大風能的轉速隨風速而變化。為了獲得最大有效功率,可使機組變速運行,通過調整轉子勵磁電流的頻率,使其與轉子轉速疊加后保持定子頻率即輸出頻率恒定。此項應用的技術核心是變頻電源。
3發電廠風機水泵的變頻調速
發電廠的廠用電率平均為8%,風機水泵耗電量約占火電設備總耗電量的65%,且運行效率低。使用低壓或高壓變頻器,實施風機水泵的變頻調速,可以達到節能的目的。低壓變頻器技術已非常成熟,國內外有眾多的生產廠家,并不完整的系列產品,但具備高壓大容量變頻器設計和生產能力的企業不多,國內有不少院校和企業正抓緊聯合開發。
(二)在輸電環節中的應用
電力電子器件應用于高壓輸電系統被稱為“硅片引起的第”,大幅度改善了電力網的穩定運行特性。
1直流輸電(HVDC)和輕型直流輸電(HVDCLight)技術
直流輸電具有輸電容量大、穩定性好、控制調節靈活等優點,對于遠距離輸電、海底電纜輸電及不同頻率系統的聯網,高壓直流輸電擁有獨特的優勢。1970年世界上第一項晶閘管換流器,標志著電力電子技術正式應用于直流輸電。從此以后世界上新建的直流輸電工程均采用晶閘管換流閥。
2柔流輸電(FACTS)技術
FACTS技術的概念問世干20世紀80年代后期,是一項基于電力電子技術與現代控制技術對交流輸電系統的阻抗、電壓及相位實施靈活快速調節的輸電技術,可實現對交流輸電功率潮流的靈活控制,大幅度提高電力系統的穩定水平。
20世紀90年代以來,國外在研究開發的基礎上開始將FACTS技術用于實際電力系統工程。其輸出無功的大小,設備結構簡單,控制方便,成本較低,所以較早得到應用。
(三)在配電環節中的應用
配電系統迫切需要解決的問題是如何加強供電可靠性和提高電能質量。電能質量控制既要滿足對電壓、頻率、諧波和不對稱度的要求,還要抑制各種瞬態的波動和干擾。電力電子技術和現代控制技術在配電系統中的應用,即用戶電力(customPower)技術或稱DFACTS技術,是在FACTS各項成熟技術的基礎上發展起來的電能質量控制新技術??梢詫FACTS設備理解為FACTS設備的縮小版,其原理、結構均相同,功能也相似。由于潛在需求巨大,市場介入相對容易,開發投入和生產成本相對較低,隨著電力電子器件價格的不斷降低,可以預期DFACTS設備產品將進入快速發展期。
(四)在節能環節的運用
1變負荷電動機調速運行
電動機本身挖掘節電潛力只是節電的一個方面,通過變負荷電動機的調速技術節電又是另一個方面,只有將二者結合起來,電動機節電方較完善。目前,交流調速在冶金、礦山等部門及社會生活中得到了廣泛的應用。首先是風機、泵類等變負荷機械中采用調速控制代替擋風板或節流閥控制風流量和水流量具有顯著的效果。國外變負荷的風機、水泵大多采用了交流調速,我國正在推廣應用中。
變頻調速的優點是調速范圍廣,精度高,效率高,能實現連續無級調速。在調速過程中轉差損耗小,定子、轉子的銅耗也不大,節電率一般可達30%左右。其缺點主要為:成本高,產生高次諧波污染電網。
2減少無功損耗,提高功率因數