時間:2023-01-29 12:54:04
序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇農業專家系統論文范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!
DOI:10.3969/j.issn.1008-0821.2012.02.040
〔中圖分類號〕G250.71 〔文獻標識碼〕A 〔文章編號〕1008-0821(2012)02-0159-08
Knowledge-based Expert System Development Overview MapLiao Yi
(Political Department,National University of Defense Technology,Changsha 410073,China)
〔Abstract〕Artificial intelligence expert system is the most important and most active areas of an application,which implements the artificial intelligence research from theory to practice,turning from the general reasoning strategies of a major breakthrough in the use of expertise.This chronological order,the expert system into the 1980s before the 1980s,1990s,2000,after four stages.Articles using bibliometric methods,analysis of the expert system development process,development and trends,pointing out that the current phase is the development of expert systems,expert systems into a variety of commercial operation,need to address the knowledge acquisition bottleneck,matching conflicts and other issues for expert systems to understand and master the subject structure,evolution,development and so provide an unique perspective and knowledge.
〔Key words〕knowledge maps;expert systems;the development trajectory
專家系統作為人工智能的一個重要分支,發展已經超過50年,在很多應用領域都獲得了廣泛使用,取得了豐碩成果。本文運用文獻計量這一獨特視角對專家系統進行了再回顧和再分析,將智能科技劃分為初創期、成長期、低谷期、發展期,利用詞頻分析、共引分析、作者共現分析等方法揭示專家系統的學科結構、影響程度、關鍵節點與時間點等重要而獨特的知識,為了解和掌握專家系統的發展與演化過程提供了獨特視角。
1 數據來源
SCI(Science Citation Index)是美國科學情報研究所ISI(Institute for Science Information)出版的期刊文獻檢索工具,所收錄的文獻覆蓋了全世界最重要和最有影響力的研究成果,成為世界公認的自然科學領域最為重要的評價工具。本文以Web of Science中的SCI數據庫為數據來源,選用高級檢索方式,以“Expert System/Experts System”作為主題詞,于2011年5月在Web of Secience中進行檢索,一共檢索到14 500篇相關文獻記錄。獲得的年度分布如圖1。所示。雖然,專家系統研究從20世紀五六十年代就開始了,但是從圖1可以看出直到1982年才有主題詞與專家系統相關的論文出現。圖1表明1991年左右,專家系統相關論文達到了峰值,但隨后呈逐年下降的趨勢。到1999年,只有494篇。但21世紀開始,專家系統相關論文又出現了增加的趨勢,并維持在一個穩定的水平中。圖1 專家系統在SCI數據庫文獻發表年度變化情況
2012年2月第32卷第2期基于知識圖譜的專家系統發展綜述Feb.,2012Vol.32 No.22 專家系統前40年的發展
本文利用基于JAVA平臺的引文分析可視化軟件Citespace,首先設定時間跨度為1950-1991年,時間切片長度為1年,聚類方式為共被引聚類(Cited Reference),閾值選擇為(2,2,20)、(3,3,20)、(3,3,20)。Citespace得出這些引文的時間跨度為1950-1990年,可以繪制出該時間段的專家系統論文時區分布圖,如圖2所示。我們以年代先后為序,將20世紀80年代以前作為第一階段,80年代至90年代作為第二階段。圖2 1950-1991年各年度專家系統論文之間的時區分布圖
2.1 專家系統起源時期
根據圖2顯示,這段時期有7個突出節點,既有7位代表人物。第一個節點代表的是“人工智能之父”――英國著名科學家阿蘭?麥席森?圖靈(Alan Mathison Turing),他于1950年在《心靈》雜志上《計算機器與智能》,提出了著名的“圖靈測試”,探討了機器智能的可能性,為后來的人工智能科學提供了開創性的構思[1]。
第二個節點代表的是美國工程院院士、加州大學扎德(LA.Zadeh)教授,他于1965年在《信息與控制》雜志第8期上發表題為《模糊集》的論文,提出模糊集合理論,給出了模糊性現象定量描述和分析運算的方法,從而誕生了模糊數學。1978年,扎德教授提出了“可能性理論”,將不確定性理解為可能性,為模糊集理論建立了一個實際應用上的理論框架,這也被認為是模糊數學發展的第二個里程碑。同年,國際性期刊《International Journal of Fuzzy Sets and System》誕生,這使得模糊理論得到普遍承認,理論研究高速發展,實際應用迅速推廣。
第三個節點代表的美國兩院院士、卡內基-梅隆大學教授艾倫?紐厄爾(Allen Newell),1972年,他出版了《人怎樣解題》(Human Problem Solving)一書,書中描述了他和西蒙試圖建立一個計算機化的“通用問題求解器”的歷程:20世紀50年代,他們發現,人類的問題解決,在一定知識領域內可以通過計算機實現,所以他們開始用計算機編程來解決問題,1956年,他們研發出了邏輯理論家和通用問題求解器(General Problem Solver),并建立了符號主義人工智能學派。我們可以看出,這本書是對他以前所作工作的總結與歸納,而邏輯理論家和通用問題求解器正是專家系統的雛形,為專家系統的出現奠定了堅實的基礎。
但是艾倫?紐厄爾的嘗試無法解決大的實際問題,也很難把實際問題改造成適合于計算機解決的形式,并且對于解題所需的巨大搜索空間也難于處理。為此,美國國家工程院院士、斯坦福大學教授費根鮑姆(E.A.Feigenbaum)等人在總結通用問題求解系統成功與失敗的經驗基礎上,結合化學領域的專門知識,于1965年研制了世界上第一個專家系統dendral,可以推斷化學分子結構。專家系統進入了初創期,其代表有dendral、macsyma(數學專家系統)等,第一代專家系統以高度專業化、求解專門問題的能力強為特點,向人們展示了人工智能應用的廣闊前景[2]。
第四個節點代表人物是美國麻省理工學院著名的人工智能學者明斯基(Minsky)。1975年,他在論文《表示知識的框架》(A Framework for Representating Knowledge,McGraw-Hill)中提出了框架理論,框架理論的核心是以框架這種形式來表示知識。理論提出后,在人工智能界引起了極大的反響,并成為了基于框架的專家系統的理論基礎,基于框架的專家系統適合于具有固定格式的事物、動作或事件。
第五個節點代表人物是美國普林斯頓大學教授格倫謝弗(Glenn Shafer),他在1976年出版了《數學理論的證據》(A mathematical theory of evidence)一書,介紹了由他和Dempster于1967年提出的D-S理論(即證據理論)。證據理論可處理由不知道因素引起的不確定性,后來,該理論被廣泛應用于計算機科學和工程應用,是基于D-S證據理論的專家系統的理論基礎。
第六個重要節點代表是美國斯坦福大學愛德華?漢斯?肖特利夫(Shortliff EH)教授,他于1975年在著名雜志《數學生物科學》上發表《A model of inexact reasoning in medicine》(《在醫學模型的不精確推理》)一文,他結合自己1972-1974年研制的世界第一個醫學專家系統――MYCIN系統(用于診斷和治療血液感染及腦炎感染,是第二代專家系統的經典之作),提出了確定性理論,該理論對專家系統的發展產生了重大影響。
第七個節點代表人物是美國麻省理工學院計算機科學和人工智能實驗室的戴維斯(Randall Davis)教授,他于1976年提出元知識的概念,并在專家系統的研制工具開發方面做出了突出貢獻――研制出知識獲取工具Teiresias,為專家系統獲取知識實現過程中知識庫的修改和添加提供了工具[3],關Teiresias,他于1977年在《Artificial Intelligence》雜志上中進行了詳細介紹,而這也為本時期專家系統的快速增多和廣泛應用奠定了堅實基礎。
20世紀70年代后期,隨著專家系統應用領域的不斷開拓,專家系統研發技術逐漸走向成熟。但同時,專家系統本身存在的應用領域狹窄、缺乏常識性知識、知識獲取困難、推理方法單一等問題也被逐漸暴露出來。人們從各種不同類型的專家系統和知識處理系統中抽取共性,人工智能又從具體研究逐漸回到一般研究。圍繞知識這一核心問題,人們重新對人工智能的原理和方法進行探索,并在知識的獲取、表示以及知識在推理過程中的利用等方面開始出現一組新的原理、工具和技術。
2.2 專家系統發展的黃金時期
20世紀80年代是專家系統突飛猛進、迅速發展的黃金時代,根據圖2顯示,這段時期共有論文982篇,有7個突出節點。
1980年,出現了第一個節點代表――美國斯坦福大學計算機科學系系主任尼爾森(NILS J.NILSSON),他出版的《人工智能原理》(《Principles of artificial intelligence》)一書,表明了拉近理論和實踐的距離的目標,書中對基于規則的專家系統、機器問題解決系統以及結構對象的代表等都進行了具體的論述。
1981年,出現了第二個節點代表――英國赫特福德大學教授Clocksin,威廉F,他出版的《PROLOG語言編程》一書,引起了計算機科學界的極大興趣,并已被證明是一個重要的編程語言和人工智能系統的新一代基礎,是專家系統的重要編程語言。
1982年,出現了第三個節點代表――美國匹茲堡大學教授米勒(Miller RA),他在《英格蘭醫藥分冊》上發表了《基于計算機的醫學內科實驗診斷顧問》(An Experimental Computer based Diagnostic Consultant for General Internal Medicine.N Engl J Med,307,468-76,1982)一文,屬當時診斷專家系統的代表力作,書中介紹了著名的內科疾病診斷咨詢系統INTERNIST-1,之后將其不斷完善成改進型INTERNIST-2,即后來的CADUCEUS專家系統,其知識庫中包含了572種疾病,約4 500種癥狀。
1983年,出現了第四個節點代表――美國的海斯羅斯(Hayes-Roth,F)教授,他于1983年發表著作《建立專家系統》,對專家系統建立的原則和要素、開發的生命周期等重要問題進行了詳細講解,為研究與開發各種類型的專家系統提供了理論依據。
1984年,出現了第五個節點代表――美國匹茲堡大學計算機科學、哲學和醫學教授布魯斯?布坎南(Bruce G.Buchanan),他于1984年發表著作《規則的專家系統:斯坦福啟發式編程項目Mycin實驗》(《Rule Based Expert Systems:The Mycin Experiments of the Stanford Heuristic Programming Project》,這是有史以來關于醫療診斷系統MYCIN的實驗規則庫公布?;谝巹t的專家系統MYCIN是專家系統開發過程中一個里程碑,研究其開發思路與方法具有非常重要的意義。
1985年,出現了第六個節點代表――美國人工智能專家、加州大學教授哈蒙(Harmon P),他出版了《專家系統:人工智能業務》(《Expert systems:artificial intelligence in business》)一書。書中闡述了專家系統如何解決問題,代表知識,并得出推論,并介紹了人工智能的具體制度,確定了專家系統的市場。
1986年,出現了第七個節點代表――著名的專家系統學者沃特曼(Waterman DA),他出版了《專家系統指南》一書,該書對專家系統的概念、組成、建立過程、建立工具、應用領域等做了深入淺出的系統介紹與論述,是當時全面介紹專家研發與應用的經典書籍。
20世紀80年代初,醫療專家系統占主流,主要原因是它屬于診斷類型系統且容易開發。80年代中期,出現大量投入商業化運行的專家系統,為各行業帶來了顯著的經濟效益。從80年代后期開始,大量新技術成功運用到專家系統之中,使得專家系統得到更廣泛的運用。在這期間開發的專家系統按處理問題的類型可以分為:解釋型、預測型、診斷型、設計型等。應用領域擴展到農業、商業、化學、通信、醫學等多個方面,成為人們常用的解決問題的手段之一。
然而,與此同時,現有的專家系統也暴露出了自身嚴重的缺陷,使不少計算機界的知名學者對專家系統產生了懷疑,認為專家系統存在的問題有以下幾點:(1)專家系統中的知識多限于經驗知識,極少有原理性的知識,系統沒有應用它們的能力;(2)知識獲取功能非常弱。為了建造專家系統,必須依賴于專家獲取知識, 不僅費時, 而且很難獲取完備性和一致性的知識;(3)求解問題的方法比較單一,以推理機為核心的對問題的求解尚不能反映專家從認識問題到解決問題的創造性過程;(4)解釋功能不強[4]。等到學者們回過頭重新審視時,20世紀90年代的專家系統理論危機已然爆發。
3 90年代專家系統向多個方向發展
由于20世紀80年代專家系統研究迅猛發展,商業價值被各行各業看好,導致90年代大批專家系統從實驗室走出來,開始了它們的工程化市場化進程。從圖1看以看出,在20世紀90年代,專家系統的相關論文不增反減,進入一個局部低谷期,這期間以“Expert System/Experts System”為主題詞的論文共7 547篇。本文利用Citespace軟件,設置參數為(4,4,20)(4,3,20)(4,4,20),獲取了該時期論文的引文聚類圖(如圖3所示)。圖2 專家系統1990-2000年的論文引文聚類圖
從圖3中我們可以看出,全圖的節點比較分散,沒有形成大的聚類,這表示該階段沒有形成重點研究方向,也沒有重大科研成果和標志性著作產生,專家系統的市場化進程嚴重牽引了研究者們的注意力,這是專家系統研究陷入低谷期的重要原因。
這段時間專家系統的研究工作大致分以下幾個方面:第一個研究方向依舊是建立在扎德(LA.Zadeh)教授模糊理論上的模糊專家系統,它同樣是該年代專家系統研究的重點方向。
第二個研究方向是骨架專家系統,代表人物有美國斯坦福大學的愛德華?漢斯?肖特利夫(Shortliff EH)教授。1974年末,MYCIN系統基本建成后,MYCIN的設計者們就想到用其它領域的知識替換關于感染病學的知識,可能會得到一個新的專家系統,這種想法導致了EMYCIN骨架系統的產生。EMYCIN的出現大大縮短了專家系統的研制周期,隨后,AGE、OPS5、KEE、KBMS、GESDE等骨架系統應運而生,它們在20世紀90年代專家系統的研究進程中,發揮著重要作用。
第三個研究方向是故障診斷專家系統,代表人物有美國麻省理工學院的蘭德爾?戴維斯(Randall Davis)教授。他于1984年在《人工智能》雜志上發表了《基于結構和行為的診斷推理 》(《Diagnostic Reasoning Based on Structure and Behavior》)一文,該論文描述了一個利用知識結構和行為,在電子電路領域進行故障診斷排除的專家系統。之后,故障診斷專家系統在電路與數字電子設備、機電設備等各個領域已取得了令人矚目的成就,已成為當今世界研究的熱點之一。
第四個研究方向是基于規則的專家系統,布魯斯?布坎南(Bruce G.Buchanan)的著作對基于規則的專家系統在這個時期的發展仍有著積極的指導作用。多種基于規則的專家系統進入了試驗階段。傳統基于規則的專家系統只是簡單的聲明性知識,而目前,規則的形式開始向產生式規則轉變,并趨向于提供較完善的知識庫建立和管理功能。
第五個研究方向是知識工程在專家系統中的運用。代表人物是美國斯坦福大學的克蘭西教授(Clancy W J),他于1985年在《人工智能》雜志上發表了重要論文《啟發式分類》(《Heuristis classification》),啟發式分類即對未知領域情況的類的識別過程。它是人類思維解決問題的重要方法,在人工智能、專家系統中可常用啟發式設計計算機程序,模擬人類解決問題的思維活動。
第六個研究方向是機器學習在專家系統中的運用。代表人物是機器學習領域前輩、澳洲悉尼大學著名教授John Ross Quinlan。他于1986年在《機器學習》(《Mach.Learn》)雜志上發表《決策樹算法》(《Induction of Decision Trees》)一文,文中他詳細描述了決策樹算法的代表――ID3算法。之后,有大量學者圍繞該算法進行了廣泛的研究,并提出多種改進算法,由于決策樹的各類算法各有優缺點,在專家系統的實際應用中,必須根據數據類型的特點及數據集的大小,選擇合適的算法。
第七個研究方向是神經網絡專家系統,代表人物有人工智能專家Stephan I.Gallant和美國加利福尼業大學教授巴特?卡斯科(Bart Kosko)。Gallant于1988年在《ACM的通信》上發表了《連接主義專家系統》(《Connectionist expert systems》)一文,文中講述Gallant 設計了一個連接主義專家系統(Connectionist expert system),其知識庫是由一個神經網絡實現的(即神經網絡知識獲?。_創了神經網絡與專家系統相結合的先例。
第八個研究方向是遺傳算法在專家系統中的運用。代表人物是遺傳算法領域著名學者、美國伊利諾伊大學David Goldberg教授和人工智能專家L.Davis。1989年,Goldberg出版了專著《搜索、優化和機器學習中的遺傳算法》,該書系統總結了遺傳算法的主要研究成果,全面而完整地論述了遺傳算法的基本原理及其應用;1991年,Davis編輯出版了《遺傳算法手冊》,書中包含了遺傳算法在科學計算、工程技術和社會經濟中的大量應用實例,該書為推廣和普及遺傳算法的應用起到了重要的指導作用。這些都推動了基于遺傳算法的專家系統的研發推廣。
第九個研究方向是決策支持系統在專家系統中的運用,代表人物是美國加利福尼亞大學伯克利分校教授埃弗雷姆?特班(Efraim Turban)。他于1990年出版了《決策支持和專家系統的管理支持系統》(《Decision support and expert systems:management support systems》)一書。20世紀80年代末90年代初,決策支持系統開始與專家系統相結合,形成智能決策支持系統,該系統充分做到了定性分析和定量分析的有機結合,將解決問題的范圍和能力提高到一個新的層次。
第十個研究方向是各種理論知識在專家系統中的綜合運用,代表人物是美國加利福尼業大學教授巴特?卡斯科(Bart Kosko)和美國伊利諾伊州研究所教授Abdul-Rahman K.H??ㄋ箍疲↘osko)于1992年出版《神經網絡和模糊系統:一個擁有機器智能的動力系統方法》(《Neural networks and fuzzy systems:a dynamical systems approach to machine intelligence》)一書,這是第一本將神經網絡和模糊系統結合起來的讀本,也是神經網絡與模糊理論綜合應用于專家系統建設的經典著作;Abdul-Rahman K.H教授于1995年,在美國電氣和電子工程師協會的《電力系統及自動化》(《Transactions on Power Systems》)會議刊上發表了《人工智能模糊無功負荷的最優VAR控制方法 》(《AI approach to optimal VAR control with fuzzy reactive loads》)一文,論文提出了一個解決無功功率(VAR)控制問題,這個方法包含了專家系統、模糊集理論和人工神經網絡的重要知識。
雖然專家系統大量建造,但投入實際運行的專家系統并不多,且效率較低,問題求解能力有待進一步提高。原因之一就是專家系統主要是模擬某一領域中求解特定問題的專家的能力,而在模擬人類專家協作求解方面很少或幾乎沒有做什么工作。然而在現實世界中,協作求解具有普遍性,針對特定領域、特定問題的求解僅僅具有特殊性,專家系統雖然在模擬人類專家某一特定領域知識方面取得了成功,但它仍然不能或難以解決現實世界中的問題。其次,開發的專家系統的規模越來越大,并且十分復雜。這樣就要求將大型專家系統的開發變成若干小的、相對獨立的專家系統來開發,而且需要將許多不同領域的專家系統聯合起來進行協作求解。然而,與此相關的分布式人工智能理論和實用技術尚處在科研階段。只有分布式系統協作求解問題得以解決,才能克服由于單個專家系統知識的有限性和問題求解方法的單一性等導致系統的“脆弱性”,也才能提高系統的可靠性,并且在靈活性、并行性、速度等方面帶來明顯的效益[5]。
4 21世紀專家系統進入穩定發展時期
進入21世紀,專家系統開始緩慢發展,這期間以“Expert System/Experts System”為主題詞的論文共5 964篇。本文利用Citespace軟件,設置參數為(6,6,20)(5,5,20)(5,5,20),獲取了該時期論文的引文聚類圖(如圖4所示)。圖4 專家系統2000-2010年的論文引文聚類圖
這個時期專家系統有3個主要研究方向:第一個是研究方向是節點明顯的基于模糊邏輯的專家系統研究方向。90年代以來,模糊控制與專家系統技術相結合,進一步提高了模糊控制器的智能水平。基于模糊邏輯的專家系統有以下優點:一是具有專家水平的專門知識,能表現專家技能和高度的技巧以及有足夠的魯棒性(即健壯性);二是能進行有效的推理,能夠運用人類專家的經驗和知識進行啟發性的搜索和試探性的推理;三是具有靈活性和透明性。
第二個是研究方向是Rete模式匹配算法在專家系統中的應用,代表人物是美國卡內基―梅隆大學計算機科學系的Charles L.Forgy教授,1979年,他首次提出Rete算法。專家系統工具中一個核心部分是推理機,Rete算法能利用推理機的“時間冗余”特性和規則結構的相似性,并通過保存中間運算結果的方法來提高推理的效率。1982年,他在《人工智能》雜志上發表《Rete算法:許多模式/多對象的模式匹配問題的一個快速算法》(《Rete:A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem》)一文,該文解釋了基本算法的概念,介紹了詳細的算法,描述了模式和適當的對象交涉算法,并說明了模式匹配的執行操作。
第三個是研究方向是專家系統在電力系統中的運用。世界各國的專家們開始熱衷于在電力生產的各個環節使用專家系統,代表人物有日本的福井賢、T.Sakaguchi、印度的Srinivasan D、美國伊利諾伊州研究所的Abdul-Rahman K.H、希臘雅典國立技術大學的Protopapas C.A、和中國的羅旭,他們在美國電氣和電子工程師協會的《電力傳輸》(《IEEE transactions on power delivery)會議刊及《電源設備系統》會議刊(《On Power Apparatus and Systems》)上發表了多篇有影響力的論文,內容涉及系統恢復、電力需求預測、變電站故障診斷和報警處理等多方面。
這十年間,專家系統的研究不再滿足于用現有各種模型與專家系統進行簡單結合,形成基于某種模型的專家系統的固有模式。研究者們不斷探索更方便、更有效的方法,來解決困擾專家系統的知識獲取瓶頸、匹配沖突、組合爆炸等問題,而這也推動了研究不斷向深層次、新方向發展。但是,由于專家系統應用的時間長、領域廣,他們遭遇的瓶頸問題一時得不到有效解決,導致了這一時期末,專家系統研究呈現出暫時的下滑現象。
5 專家系統發展趨勢分析
圖一發展曲線上第二個時間節點是1992年,從該年起專家系統相關論文呈下降趨勢,然后在2002年又開始緩慢增長,近一年多來又開始下降,這標志著專家系統研究在布滿荊棘的道路上前行,前景是光明的,但道路是曲折的。本文以5年為一個單位,統計了1990-2009年20年期間專家系統相關論文中高頻詞的變化情況,如表1所示,從該表可以獲得這個時期專家系統研究的一些特點。
(1)在1990-1999年期間,人工智能出現新的研究,由于網絡技術特別是國際互連網技術發展,人工智能開始由單個智能主體研究轉向基于網絡環境下的分布式人工智能研究,使人工智能更加實用,這給專家系統帶來了發展的希望。正因為如此,我們從詞頻上可以看出,人工智能(artificial intelligence)一詞在這十年一直位居前兩位,在專家系統研究中處于主導地位,而與其相關的知識表示(knowledge representation)、知識獲取(knowledge acquisition)等,也成為了學者們研究的重點方向。
(2)該時期的第二個特點是神經網絡研究的復蘇。神經網絡是通過模擬人腦的結構和工作模式,使機器具有類似人類的智能,如機器學習、知識獲取、專家系統等。我們從詞頻上可以看出神經網絡(neural network)一詞得以快速增長,1995年時位列第一,進入21世紀也是穩居第二位,神經網絡很好地解決了專家系統中知識獲取的瓶頸問題,能使專家系統具有自學習能力,它的出現為專家系統提供了一種新的解決途徑[6],同時也顯示出他獨有的生機與活力。
(3)該時期是模糊邏輯的發展時期。模糊理論發展至今已接近三十余年,應用范圍非常廣泛,它與專家系統相結合,在故障診斷、自然語言處理、自動翻譯、地震預測、工業設計等方面取得了眾多成果。我們從詞頻上可以看出,模糊邏輯(fuzzy logic)一詞,除在1990-1994年期間位居第六位外,之后都位居前三甲,2000-2004年期間更是位列第一。模糊控制與專家系統技術相結合,進一步提高了模糊控制器智能水平,這種控制方法既保持了基于規則的方法的價值和用模糊集處理帶來的靈活性,同時把專家系統技術的表達與利用知識的長處結合起來,能處理更廣泛的控制問題。
(4)故障診斷成為專家系統研究與應用的又一重要領域。故障診斷專家系統的發展起始于20世紀70年代末,雖然時間不長,但在電路與數字電子設備、機電設備等各個領域已取得了令人矚目的成就,已成為當今世界研究的熱點之一。這從高頻詞分布可以開出,故障診斷(fault diagnosis)從1995-1999年間的最后一位攀升至2005-2009年間的第一位,足見其強大的生命力。在專家系統己有較深厚基礎的國家中,機械、電子設備的故障診斷專家系統已基本完成了研究和試驗的階段,開始進入廣泛應用。
(5)遺傳算法的應用逐漸增多。20世紀90年代,遺傳算法迎來了發展時期,無論是理論研究還是應用研究都成了十分熱門的課題。尤其是遺傳算法的應用研究顯得格外活躍,不但應用領域擴大,而且利用遺傳算法進行優化和規則學習的能力也顯著提高。進入21世紀,遺傳算法的應用研究已從初期的組合優化求解擴展到了許多更新、更工程化的應用方面。這在高頻詞分布中可以看出,以2000作為臨界點,遺傳算法(genetic algorithms)從20世紀90年代的10名之后,到位于高頻詞前六強之中,充分反映出它發展的良好勢頭。
6 小 結
專家系統是20世紀下半葉發展起來的重大技術之一,它不僅是高技術的標志,而且有著重大的經濟效益?!爸R工程之父”E.Feignbaum在對世界許多國家和地區的專家系統應用情況進行調查后指出:幾乎所有的ES都至少將人的工作效率提高10倍,有的能提高100倍,甚至300倍[7]。
專家系統技術能夠使專家的專長不受時間和空間的限制,以便推廣稀缺的專家知識和經驗;同時,專家系統能促進各領域的發展,是各領域專家專業知識和經驗的總結和提煉。
專家系統發展的近期目標,是建造能用于代替人類高級腦力勞動的專家系統;遠期目標是探究人類智能和機器智能的基本原理,研究用自動機模擬人類的思維過程和智能行為,這幾乎涉及自然科學和社會科學的所有學科,遠遠超出了計算機科學的范疇。
隨著人工智能應用方法的日漸成熟,專家系統的應用領域也不斷擴大。有人類活動的地方,必將有智能技術包括專家系統的應用,專家系統將成為21世紀人類進行智能管理與決策的工具與助手。
參考文獻
[1]百度百科[EB].http:∥baike.省略/view/2130.htm.
[2]黃可鳴.專家系統二十年[J].計算機科學,1986,(4):26-37.
[3]路耀華.思維模擬與知識工程[M].北京:清華大學出版社,1997.
[4]趙致琢.專家系統研究[J].貴州大學學報:自然科學版,1990,(6):40-48.
[關鍵詞]網絡經濟會計時空觀會計假設缺陷會計系統變化
在我們跨入21世紀之際,由現代信息技術,特別是網絡技術引發的全球信息化浪潮沖擊著傳統社會生活的每一個角落,網絡化、數據化、知識化已成為時代的主旋律。網絡時代改變了整個社會經濟的生產結構和勞動結構,打破了傳統的企業管理模式和會計模式,由此,也動搖了傳統會計理論的框架,其中,首當其沖的是改變了會計的時空觀。
一、網絡經濟與會計
現代社會經歷的信息革命是人類歷史上文明發展的嶄新階段。隨著20世紀40年代末信息論、系統論、控制論的產生,經典理論中關于宇宙\"實體\"和能量要素的觀念被物質、能、信息三要素理論所取代。從信息角度對事物客體加以新的描述,已成為現代人的認識和思維方式。[1]目前,微電子技術、現代通訊技術、生物工程、人工智能、CI設計等知識密集型產業的迅速倔起,形成了繼第一產業(農業)、第二產業(工業)、第三產業(商業)之后的第四產業,從而將人類社會從\"工業文明\"推進到\"信息文明\"。在現代信息技術的催化下,全球的網絡經濟已具雛形,網絡己不僅僅是信息傳遞的媒介,更為企業的生產經營活動提供了新的場所,開創出一些全新的經濟組織(如虛擬企業)和經營方式(如電子商務)。因特網給世界經濟上足了發條:以往建立一個公司直到其上市,通常需要幾年甚至十幾年時間,可是今天的網絡公司,從幾個人的小作坊搖身一變成為幾億美元的上市公司,只需十個月;電子計算機從50年代開始發展,40多年間,從286到386……到奔騰,芯片的發展速度呈現出每18個月翻一番,同時保持成本基本不變的趨勢,這就是著名的\"摩爾定律\"。因特網驅趕著IT業一路狂奔,加緊工作,不斷創新,因為18個月后\"不成功便成仁\"。可以說,因特網己滲透到整個世界的每一角落,正深刻改變著經濟社會的\"游戲規則\"。[2]
會計是社會生產力發展的產物,\"經濟越發展,會計越重要\"。會計作為社會經濟計量的支柱,從內容到形式總是體現著各個時代經濟發展的主要風貌,它的不斷發展標志著社會文明和經濟管理的進步。就信息文明對會計學科的影響而言,它便會計發展史經歷了由會計電算化到會計信息化兩次重大變革。
會計電算化是以電子計算機替代人工記賬、算賬、報賬的過程,它的出現是會計技術手段上的一次\"革命\"。會計電算化的到來,把廣大會計工作人員從那種日夜埋頭于抄寫、計算、整理、匯總、核對等繁重的手工作業中解放出來,使他們得以騰出精力,逐漸由\"核算型\"轉向\"管理型\",從而提高了會計工作的效率,促進了會計工作的規范化,為整個管理規則的信息化和現代化奠定了基礎。值得注意的是,盡管手工會計系統的紙張、筆墨、算盤己被電子計算機所替代,但會計規則(如會計假設、會計原則)并沒有因使用計算機而改變。因此,有人將此時的電算化會計系統稱之為\"手工會計系統的仿真\"。[3]
近期來,現代信息技術、尤其是網絡技術在會計領域的應用和發展,預示著會計技術手段由會計電算化進一步跨越到會計信息化階段。會計信息化的目標是通過將會計與現代信息技術(主要是網絡技術)的有機結合,對會計基本理論與方法、會計實務工作、會計教育等多方面均進行全面發展,進而據以建立滿足現代企業管理要求的會計信息系統。因此,會計信息化的本質是會計與現代信息技術相融合的一個發展過程。作為會計發展史上的又一個里程碑,會計信息化是一次\"質\"的飛躍,其意義在于:它不再是會計技術手段的簡單替代,或電子計算機的延伸,而是由此引發的對現行會計規則的挑戰,以及對傳統會計理論與方法的整合。對此,一些有識之士,適時提出\"網絡財務\"[4]或《網絡會計\"的全新概念。
二、從網絡經濟角度重新審視會計的時空觀
康德哲學認為,宇宙本體之下,最基本的范疇是時間和空間。經濟學意義上的時空觀意味著滿足人類需求的衡量:農業文明,產品生產者就是自身產品的需求者,沒有商品交換,沒有產品的社會性,不需要也不可能跨越時間和空間去滿足他人需要;工業文明,產品變成商品,擴大了人們的經濟交往范圍。商品生產者投人資本進行商品生產,資本是一種時間的等待,就是犧牲當前的消費,投資于長遠的利益。此外,為實現商品價值,需要通過動力型的生產力,也就是蒸汽機來跨越商品生產者與商品消費者之間的空間距離;信息文明,由于因特網,世界變成了一個地球村,此刻,時間和空間的距離又變小了。只要在線,發個E@M隊IL,瞬間即可溝通信息,與地球另一邊的企業距離變得很近。如不上網,與隔壁企業的距離卻很遠,這完全是另外一種意義上的時空概念。因特網的本質就在于使時間和空間的距離為零,或近似于零,也就是便距離帶來的磨擦系數降低,減少科斯所說的交易成本,加速度地實現商品流通。[5]目前,隨著信息文明的到來,會計所面臨的社會環境和經濟環境與工業時代相比,發生了巨大變化。但現行的會計理論與方法仍局限于工業文明的層次,這種過時的思維模式如同機器上的固定齒輪,僵化呆板而又缺乏大局觀。如果從網絡經濟的角度重新審視,展示在我們面前的將是一片會計時空的新視野。
(一)網絡會計的空間觀對會計主體假設的影響
空間,是指運動著的物質的伸張性和廣延性,一定的空間范圍對物質運動的發展有制約和影響作用。傳統會計的主體假設從空間上限定了會計工作的具體范圍,在這一假設基礎上,資產、負債、所有者權益、收入、費用、利潤等基本要素才有空間的歸屬。[6]在網絡經濟時代,企業作為會計主體,其外延不斷變化,至少表現在兩個方面:
1.模糊性。例如,已構成母、子公司關系的企業集團出現后,會計為之服務的主體已具有雙重性;再如,基于網絡的一種臨時性結盟組織(VIRTUALFIRMS虛擬公司)已不同于傳統意義上的企業組織,它借助于計算機網絡根據工作任務或市場變化的需要,可以迅速地進行分合、重組,即其\"主體\"可能時而膨脹、時而縮小、甚至解散;[7]以及近期出現并快速發展的基金項目。如此,便會計核算的空間范圍處于一種模糊狀況。對于會計主體的這種模糊性,需要重新認識和拓展會計主體假設的空間界限。
2.整合性。隨著全球經濟一體化和國際資木流動的加劇,企業間不斷進行分化、重組、兼并,跨地區、跨行業、強弱聯合、強強聯合,成立企業集團,乃至跨國集團公司,會計主體呈不斷整合之勢。以往由于受傳統方式的空間局限,集團型企業(總公司)對異地機構(子公司、分公司)的會計核算和財務管理,在技術難度和管理成本上都是高昂的。因而,在一定程度上,制約了資本的流動和企業的整合?;诨ヂ摼W的會計系統突破了這一空間局限,無需遠行,通過遠程報表、遠程監控,使物理距離變成鼠標距離,使其管理能力能夠輕易地延伸到全球的任何一個結點。從而,也使得\"大企業變小\"、\"復雜機構變得簡單明了\"。從這個意義上來說,又縮小了會計為之服務的空間范圍。
(二)網絡會計的時間觀對持續經營、會計分期假設的影響
時間,是指事物運動的持續性和順序性,是運動著的物質存在的形式。時間是無限的,但具體事物運動的時間是有限的,它是一種不可再生的資源。持續經營假設和會計分期假設確立了會計工作的時間范疇,前者設定會計主體是一個\"健康肌體\",后者的設定是為了便于對會計主體\"健康狀況\"的定期診斷。網絡會計對持續經營、會計分期假設的突破表現在:
1.即時性。持續經營假設設定了企業在未來的一定期間內不會發生解體清算的前提條件,這是進行資產計價和收入配比、費用分配的基礎。但現代經濟中的不確定因素不斷增加,隨時都可能導致企業解體,比如,按照\"摩爾定律\"IT業企業的生命周朔只有18個月;而短期的基金項目、網絡會計的虛擬公司是一種臨時性組織,從事的多是一次易,完成后即告解散,生命周期極短,顯示出即合即分的\"即時性\"特征。因此而引發對持續經營假設的否定,縮短了會計的時間界限。
2.實時性。會計分期假設為定期報告企業財務狀況,確定經營損益提供了前提,同時,它也是權責發生制、會計要素確認與計量的依據。在網絡環境下,計算機強大的運算和傳輸功能,使手工處理信息高成本的障礙被掃除。如果說PC時代的會計系統主要解決工作量問題,那么網絡會計將在此基礎上重點突破速度問題。時間上便會計核算從事后達到實時,財務管理從靜態走向動態,只要需要,無需顧及和等待會計期末,擊點鼠標即可生成所需的會計信息,豐富了會計信息的內容,提高了信息的質量和價值。由此,可以滿足期貨業務、衍生金融工具的特殊需求,滿足廣大投資者(股民)的投資需求,去年11月,國際會計準則委員會就了\"因特網上的會計報告\"的文件。網絡會計的實時性便會計分期假設消除了時間的斷點。
三、穿越網絡時空隧道的會計反思
會計的時空觀是構架會計理論與方法的哲學。網絡環境下,它的重大改變必將引起會計系統的一系列變化:
l.集成化。會計信息是對企業經濟活動的反映,其數據源于業務部門(如,人、財、物、供、產、銷)?;诨ヂ摼W的企業管理信息系統,將企業整個生產經營活動的每個信息采集點都納入企業信息網之中,大量的數據通過網絡從企業各個管理子系統(如生產管理系統、庫存管理系統、人事管理系統)直接采集,并通過公共接口,與有關外部系統(如銀行、稅務、經銷商等)相聯結,便會計系統不再是信息的\"孤島\",絕大部分的業務信息能夠實時轉化,直接生成會計信息,會計數據處理呈集成化之勢。
2.簡捷化。由于電子計算機具有強大的運算功能,系統由計算機來執行從會計憑證到財務報告全過程的信息處理,人工干預大大減少,客觀上消除了手工方式下信息處理過程的諸多技術環節,如平行登記、錯帳更正、過帳、結帳、對帳、試算平衡等。[8]再者,計算機又承擔起存貨計價、成本計算和計提折舊等繁雜的核算工作。因此,相對于手工會計而言,會計電算化的技術性及其復雜程度也大幅度降低,傳統的手工會計處理將逐漸退出歷史舞臺。
3.多元化。即:(1)收集與提供信息多元化。在經濟社會一體化、數字化、網絡化的基礎上,會計系統通過對企業內外各個機構、部門的信息接口轉換、接收貨幣形態的信息,同時亦可接收非貨幣形態的相關信息,其信息渠道更加寬敞;隨著多媒體技術的采用,電算系統除了提供數字化信息,也可提供圖形化信息(如財務分析、預測的直方圖、折線圖)以及語音化信息(如有聲財務分析報告);(2)處理信息方法多元化。電算化條件下,會計系統在主體認定的計算方法(如固定資產折舊的直線法)的同時,如果需要亦可選用其他備選方法(如雙倍余額遞減法、年數總和法)進行計算,比較差異。為加強管理與考核,甚至可以啟用手工方式下所不得不放棄的核算方法,例如,零售企業的\"售價數量金額核算法\"、工業企業的\"作業成本法\"等全新的核算方法;此外,由于系統可以接收(或調用)大量非貨幣形態的相關信息,便于系統運用有關數學模型,進行財務分析、預測和決策;(3)提供信息空間多元化。借助于信息處理方法多元化的結果,會計系統提供信息的空間非常廣闊,根據需要,有貨幣形態的信息,亦有非貨幣形態的相關信息(如職工的招聘與下崗、社會公益事項),既有歷史信息(歷史成本),也有現在信息(重置成本、公允價值)和未來信息(預定成本、目標利潤),最終的會計信息將擺脫現有模式,能夠滿足不同用戶的個性需要,用戶可以通過\"菜單\"或\"會計頻道\",[9]選擇搭配會計信息的\"套餐\"或\"節目\"。
4.電子化。我國會計電算化的初級階段便會計手段由算盤到鍵盤,從賬本到磁盤。而網絡會計將便會計介質繼續變化,迅速走向電子化,如各種發票、結算單據均以電子化的形式出現,會計數據流動過程中的簽字蓋章等傳統確認手段失去意義。此外,隨著電子商務的興起,貨幣的\"質地\"也將變化,不再是原來的紙幣或硬幣。網絡會計環境是一個集供應商、生產商、經銷商、用戶、銀行等機構為一體的網絡體系,巴不存在貨款的直接交易,而代之以電子貨幣進行網上結算。計算機信息處理的集中性、自動性,使傳統職權分割的控制作用近于消失,信息載體的改變及其共享程度的提高,又使手工系統以記賬規則為核心的控制體系失效。[10]對此,現代信息技術給企業的內部控制賦予了新的內涵:如口令控制、數據加密、職能權限管理、訪問時間權限管理、操作日志管理等。
5.開放化?;诨ヂ摼W的會計系統,大量的數據通過網絡是從企業內外有關系統(如證監會、銀行、企業的生產部廣]、人事部門等)直接采集。特別是企業外部的各個機構、部門(如會計師事務所、財政、審計、稅務、銀行、證券監管、保險監管等)可根據授權,在線訪問,通過Intemet進入企業內部,直接調閱會計信息。瞬間溝通便會計信息系統由封閉走向開放,由數據的微觀處理逐步登上宏觀數據運作的殿堂。對此,企業會計信息系統必須注意系統的安全性,加強回叫設備(C/L「一BM旺DEVIC磅)以及防火墻(FI旺WML)等技術,防止網上泄密和惡意攻擊。[11]會計信息透明度的增強,有效地避免會計處理的\"黑箱\"操作,有利于對企業會計信息系統的社會監督和政府監督。
6.智能化。電算化會計系統可以理解為一個由人、電子計算機系統、網絡系統、數據及程序等有機結合的應用系統。它不僅具有核算功能,而且更具控制功能和管理功能,因此,它離不開與人的相互作用,尤其是預測與輔助決策的功能必須在管理人員的參與下才能完成。所以,會計信息化不再是一個簡單的模擬手工方式的\"仿真型\"或\"傻瓜型\"系統,而是一個人機交互作用的\"智能型\"系統。目前,隨著我國經濟體制改革的深化,面對已經來臨的全球化知識經濟的浪潮,會計工作加快了由核算型向管理型的重心轉移。由此,要求會計系統必須放大功能,而網絡會計所表現出來的集成性、簡捷性、開放性、多元性、實時性等技術特征,為此提供了堅實的技術基礎。并且,在這種戰略性轉移的過程中又不斷推陳出新,例如,建立以會計為核心的\"企業管理信息系統(EIP)\"[lz]、\"智能型會計專家系統\"等,從而,又推動會計職能向更深的層次延伸。
綜上所述,在網絡經濟環境下,會計系統以計算機、網絡技術等新型的信息處理工具置換了傳統的紙張、筆墨和算盤。而這種置換不僅僅是簡單的工具改變,也不再是手工會計的簡單模擬,更重要的是它所帶來的對傳統會計理念、理論與方法前所未有的、強烈的沖擊與反思,如果我們能夠認識到這一點,充分發揮現代信息技術的潛能,將會引發又一場會計發展史上的大革命。
主要參考文獻:
1(美)A沃爾勃特·信息經濟學·吉林:吉林大學出版社·1992
2石子強·改變游戲規則·北京晚報,北京:北京晚報社,2000年2月15日
3薛云奎·電算化會計的局限:仿真手工·財會世界,北京:中國財經報社,2000年2月24日
4王文京、胡迸平·網絡財務時代撲面而來·會計研究,1999;10:37一41
5奇平;無需遠行,無需久等·南方周末,廣東:南方周末報社,1999年11月5日
6王世定·論會計假設·見:中國會計學會,1994年會計學論文選,北京:中國財經出版社,1996:157一169
7雷光勇、黃斌·試論網絡公司及其對財務會計的影響·會計研究,1999;1:24一27
8劉志濤·會計電算化對會計理論和實務發展影響的研究·見:中國會計學會,中國會計學會重點科研課題文集,北京:中國財經出版社,1998:33一48
9薛云奎·管理集成與會計頻道·會計研究,1999;11:30一36