時間:2023-12-28 11:44:44
序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇量子力學的性質范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!
1 資料和方法
1.1 資料
308例患者均來自門診,年齡17~52歲,病程4個月~5年;其中青春期90例,育齡期75例,圍絕經期84例,絕經期59例。根據《婦產科學》和《良性子宮出血的診斷及治療》診斷標準:308例患者中功能性子宮出血107例,子宮肌瘤63例,子宮內膜炎55例,盆腔炎42例,經間期出血41例[2,3]。其中病理報告提示子宮內膜單純性增生過長有74例,基礎體溫(BBT)呈單相改變的有31例。參照《中醫婦科學》,根據出血時間、出血量、月經色、質及伴隨癥狀進行辨證分型,脾腎兩虛型77例,肝經郁熱型73例,濕熱型38例,腎陰虛型31例,血熱型39例,血瘀型50例[4]。
1.2 辨證治療及護理
1.2.1 分型論治
脾腎兩虛型,治以健脾補腎、固沖止血;肝經郁熱型,治以疏肝解郁、清熱止血;濕熱型,治以清熱利濕、固沖止血; 腎陰虛型,治以滋陰清熱,固沖止血; 血熱型,治以清熱涼血,固沖止血;血瘀型,治以理氣化瘀、固沖止血 。
1.2.2 護理 創造安靜、整潔、舒適的就醫環境,關心體貼患者的疾苦,對病人熱情、親善、和藹,解釋疾病發生的原因及生活起居之宜忌,對其進行開導,化解矛盾,使之氣機條暢,幫助患者消除恐懼心理,增強患者戰勝疾病的信心[5]。對出血較多的患者絕對臥床休息,以減少盆腔充血。同時,因大量失血后引起全身抵抗力下降,囑患者適寒溫、慎風寒、防外感。 出血日久必致氣血虛弱,脾胃功能受損,飲食以易消化且品種豐富之健脾補血的食物為主。避免辛辣生冷之物,辛辣之品易助陽動血,生冷之物易凝滯血脈,二者可加重病情。出血期間血室空虛,邪氣易于入侵,提醒患者勤換內褲,每日用溫水沖洗外陰,但嚴禁坐浴。
1.2.3 月經量和行經天數 采用先稱重月經墊的干重,行經后立即稱重月經墊濕重,重量差即為月經量,以前一次月經周期第1天到下次月經周期第1天為月經行經的天數。
2 結果
2.1 治療結果
治愈:經量、經期、周期恢復正常,停藥后仍維持3個月經周期以上或血止后絕經;顯效:出血控制、月經周期、經量基本正常,但經期仍較長(7 d以上,10 d以下),停藥后維持3個月經周期以內;有效:出血減少,部分自覺癥狀、月經周期、經期得到明顯改善;無效:經量、經期、周期無改善[4]。見表1、表2。 表1 不同類型良性子宮出血的治療效果表2 中醫辯證分型治療良性子宮出血的效果
2.2 月經量和行經天數觀察結果
治療前月經總量在200 ml以上者23例,150~200 ml者117例,100~150 ml者147例,80~100 ml者11例;治療后月經總量在100 ml以上者僅有25例。治療前經期20 d以上者為10例,15~20 d者91例,10~15 d者為175例,7~10 d者26例;治療后經期>7 d者僅27例。
3 討論
良性子宮出血性疾病屬中醫學“月經病”范疇,主要病因、病機是外邪入侵、內傷、房勞多產,致臟腑功能失調、氣血不和、沖任二脈損傷、血行妄動。臟腑功能失調在發病中占重要地位,主要體現在肝、脾、腎三臟。肝藏血,可調節血量和防止出血;脾主運化,為氣血生化之源,脾還具封藏功能而防止血液溢出脈外;腎藏精,精血同源。所以,治療良性子宮出血性疾病本在調經,根據月經周期、經量、伴隨癥狀及致病病因進行辯證施治。同時尤其要兼顧臟腑功能的調理,其使臟腑功能健旺、氣血調和,沖任和調,最終可使月經自調。對于出血時間長、出血量多的患者,應積極采取止血塞流治則,具體治法視發病機理而定,如虛則補而止、實則瀉而止、熱則清而止、瘀則活而止。
護理在月經病的整個治療中起著很重要的作用,它直接影響著疾病的效果及預后。對于脾腎兩虛型患者應注意提醒患者休息、加強營養、避風寒;對肝經郁熱型患者要注意開導,保持患者情緒舒暢;對濕熱型患者應注意避免居室潮濕,少食用油膩之品;對腎陰虛型和血熱型患者應忌食辛辣溫熱之物,以瓜果蔬菜為宜;對血瘀型患者應提醒慎食寒涼食物,注意經期衛生。
治療結果顯示,功能性子宮出血(91.5%)和經間期出血(97.4%)效果較好,而子宮肌瘤(88.8%)和盆腔炎(83.2%)所致子宮出血效果較差,提示中藥對于功能性的子宮出血疾病具有良好的調節作用。在辨證治療中,脾腎兩虛型(93.4%)、肝經郁熱型(94.5%)和血熱型(92.2%)效果較好??傊?,中醫藥對良性子宮出血性疾病通過兼顧臟腑、氣血、陰陽、寒熱等綜合辯證,治標與治本相結合,在改善癥狀的同時調整臟腑功能,臨床實效好,并且用藥靈活,副反應少,患者易于接受
參考文獻
[1] 梁婷,李克湘. 功能性子宮出血的中西醫治療現狀[J]. 中醫藥導報,2007(10):91-93.
[2] 樂杰. 婦產科學[M].北京:人民衛生出版社出版,1996:371.
AbstractObjective:Exploring the improvement of cerebral hemorrhage patients' quality of life with holistic nursing as well as providing feasible and effective evidence for improvement of cerebral hemorrhage patients' quality of life.Methods:60 cases patients with cerebral hemorrhage were divided into the holisti nursing care group (observation group) and usual nursing care group(control group).Two groups of patients were given conventional therapy,the holisti nursing care group patients were given continuous throughout holisti nursing,meanwhile the usual nursing care group patients were given conventional nursing.All patients were given evaluating by daily living scale(BI) to assess quality of life.Results:The holisti nursing care group patients' activities of daily life are better than the control group after hospitalization(P<0.05).Conclusion:The holisti nursing care could play an important role in the improvement of patients' quality of life.
Key Wordsthe holisti nursing care cerebral hemorrhage quality of life
自發性腦出血并發癥較多,治療上采取綜合性治療措施,合理準確的整體護理可明顯促進病情穩定,改善自發性腦出血患者的生活質量?,F報告如下。
資料與方法
按照1995年全國第4屆腦血管學術會議制定的診斷標準[1],2005年4月~2007年4月收治自發性腦出血患者60例,其中男33例,女27例;年齡56~78歲,平均64±6歲。原發疾?。涸l性高血壓24例,糖尿病l5例。按病案號單雙隨機分觀察組、對照組,觀察組33例,對照組27例,兩組性別、年齡、文化程度、病情等均無統計學差異(P>0.05)。
護理方法:對照組按內科護理常規進行護理。觀察組施行整體護理:①護理評估與診斷:實施整體護理的患者由專人負責,實行24小時負責制,在患者入院后2小時內進行評估,取得全面、詳細的資料。根據評估結果作出護理診斷,制定護理計劃、具體護理措施及目標。②做好病情觀察。③用藥護理:輸液速度嚴格按醫囑執行,警惕電解質紊亂。用藥期間嚴密觀察血壓、心率、尿量等的變化,注意不良反應,加強用藥安全。④生活護理:讓患者充分休息,加強病房管理、保持環境舒適,夜間注意病室內光線強度及各種監護儀器音量的調節,保證患者的睡眠時間和質量。合理安排膳食,給予低鹽、低脂、低膽固醇、低熱量、富含維生素、清淡、易消化而產氣少的食物,為減輕心臟及胃部負擔,鼓勵少食多餐,避免過飽。保持大便通暢,鼓勵定時排便,便秘時可每天清晨飲蜂蜜20ml加水,多做腹部順時針按摩,必要時使用開塞露、口服緩瀉劑、灌腸排便。主動協助和督促患者排尿,若患者確實存在排尿困難,經熱敷等無效,可予以留置導尿,定期沖洗尿管,防止尿道感染。⑤康復護理:根據患者病情決定休息或適當運動功能鍛煉,重度患者應絕對臥床休息。當患者病情逐漸好轉恢復時,可在床上或起床活動,活動應循序漸進。協助患者翻身、拍背;指導家屬給患者做肌肉按摩及肢體各關節被動運動,以減輕局部受壓及腫脹,預防壓瘡,減少下肢深靜脈血栓、肌肉萎縮等并發癥。⑥做好心理護理,使患者積極主動配合治療,樹立戰勝疾病的信心。
生活質量評估方法:采用日常生活活動量表(Barthel指數)。最高分100分,最低分0分,分值高為優,分值低為差。0~20分極嚴重功能缺陷;25~45分嚴重功能缺陷;50~70分中度功能缺陷;75~95分輕度功能缺陷;100分能自理。
統計方法:所測數值均用(X±S)表示,P<0.05為差異有顯著性,全部統計方法用SPSS11.5統計分析軟件完成。
結 果
觀察組的日常生活活動量表中進餐、洗澡、修飾、穿衣、可控制大便、可控制小便、用廁等各項指標均比治療前明顯改善(P<0.05);觀察組各項指標的改善均明顯優于對照組(P<0.05),見表1。
討 論
整體護理目標是根據人的生理、心理、社會、文化、精神等多方面的需要,提供適合人的最佳護理。腦出血后中樞神經系統在結構和功能上具有可塑性和重組能力[1],患者同時往往有抑郁或焦慮情緒[2]。整體護理提高了患者對相關知識的理解能力和健康指導依從性,患者得到了更多的疾病相關信息,并能配合進行正確有效的康復訓練,改善肢體功能和日常生活能力,飲食更科學,服藥更合理,進而有效提高了其生理和心理健康狀況。通過生活質量評估發現,自發性腦出血患者生活質量明顯下降,實施整體護理干預后患者BI評分均有不同程度的增高,分值明顯高于實施常規護理的對照組,提示整體護理明顯地改善了患者心理健康狀況,使其能更積極、樂觀地配合治療和康復計劃。
參考文獻
中圖分類號:041 文獻標識碼:A 文章編號:1006-0278(2013)04-193-01
一、引言
作為現代物理學和現代科學技術的理論基礎,量子力學將物質的波動性與粒子性統一起來,是研究微觀粒子運動規律的物理學分支學科。很多教師在上課時只著重于講授理論體系本身的知識,往往忽略了理論和實驗的緊密聯系,從而導致它的實驗建設一直是本課程建設的薄弱環節。充分考慮到該門課程的性質和特點,我們在教學中借鑒了工科教學的模式重點圍繞“培養學生物理應用的慣性意識與掌握量子力學基本概念和規律”的目標開展了三類不依賴于儀器設備和環境條件的實驗,以切實貫徹“德育為先、能力為重”和“育人為本”的原則。
二、量子力學的實驗教學
為了讓學生從思想上接受并理解量子觀念,在學習中透過復雜的數學計算深入理解量子力學的概念和規律,并能主動積極地思考、解決相關問題,我們構建了由思想、演示與創新性實驗組成的課內課外教學平臺,以輔助量子力學的理論教學過程。
思想實驗,又稱“假想實驗”,是人類按照科學研究的實驗過程在頭腦中進行的發現和獲取科學事實與自然規律的邏輯思維活動,是自然科學家和哲學家經常使用的一種十分有效的研究方法。由于不會受到主客觀條件及儀器設備的操作限制,思想實驗可以為學生的思維互動啟發提供有利的平臺。事實上,在量子力學建立與發展的過程中,很多思想實驗都起到了重要的推動作用。例如作為量子力學的創始人之一,奧地利物理學家埃爾溫?薛定諤提出了著名的“薛定諤之貓”的思想實驗,它將量子理論微觀領域中原子核衰變的量子不確定性與宏觀領域中貓的生死聯系在了一起,充分體現了量子力學的奇異性。通過在課堂教學中講授諸如此類的思想實驗可以給學生提供一個動腦“做”理論的機會,這樣不僅可以使學生從理性的角度接受量子力學的基本思想并深入理解量子力學的基本概念和基本理論,還可以激發他們對課程的學習興趣,在無形中培養他們的理性思維、邏輯思維、創新意識和推理能力。
演示實驗,即教師在課堂上借助視頻、計算機模擬等手段演示實驗過程,展示物理現象,引導學生觀察、思考、分析并得出結論的過程。量子力學的建立離不開很多重要實驗的支撐,如黑體輻射、光電效應等。其中一些實驗由于條件及經費的限制目前無法在實驗室開展,所以我們可以充分利用豐富的網絡資源及Matlab等數學軟件構建演示實驗的平臺,給學生提供一個動眼“做”理論的機會。一方面,通過播放演示實驗的視頻重現實驗過程,加強引導學生對實驗的條件、思路和方法等進行思考和分析,培養學生的實驗素養和強化他們的實驗技能,幫助他們增加感性認識,使他們體會科學的發展過程,克服抽象的物理圖景給他們帶來的困擾。另一方面,通過利用數學軟件實現對量子力學課程中一些問題的靜、動態數值模擬,將抽象的量子力學結果形象直觀化,幫助學生透過復雜的數學公式推導深入、形象地認識微觀粒子的特征,使他們深入理解量子力學的基本原理和基本概念,提高他們運用物理思想進行綜合分析的能力。
原子核的衰變是隨機事件,我們所能精確知道的只是放射性原子的半衰期——衰變一半所需要的時間。但是, 我們卻無法知道, 它在什么時候衰變。因為原子的狀態不確定,所以貓的狀態也不確定。我們只有在揭開蓋子的一瞬間,才能確切的知道此貓是死是活。如果沒有揭開蓋子進行觀察,我們永遠也不會知道此貓是死是活,它將永遠處于半死不活的狀態。這與我們的日常經驗嚴重相違,要么死,要么活,怎么可能不死不活,半死半活呢?
其實,薛定諤的貓是關于量子理論的一個理想實驗。量子力學是描述原子、電子等微觀粒子的理論,它所揭示的微觀規律與日常生活中看到的宏觀規律很不一樣。量子力學認為一切微觀粒子既有波動性又有粒子性,既所謂的波粒二象性。所有的微觀粒子諸如電子、質子、光子等都有一個奇怪的性質:它們在同一個時刻可以既在這里,又在那里,既是粒子又是波,就像有分身法術一樣。微觀粒子是粒子和波兩象性矛盾的統一。為了描述微觀粒子的狀態,人們引入了波函數,微觀粒子的波動呈現出它運動的一種統計規律,因此稱此波動為概率波或概率波幅(即量子態)。概率波幅是量子力學世界里最基本最重要的概念,微觀世界千奇百怪的特性就起源于這個量子態。微觀粒子的量子態可以是線性疊加的,比如電子的軌道疊加。“疊加態”就是有幾種本征態疊加在一起的粒子狀態,這時這個粒子的狀態是不確定的,只有當一個“測量”被進行的時候,才會呈現一個被測量到的狀態,可能是該粒子的任何一種本征態。
量子力學是研究微觀粒子運動規律的科學,自誕生以來它就成功地說明了原子及分子的結構、固體的性質、輻射的吸收與發射、超導等物理現象。作為物理學專業的專業理論課,量子力學在物理學專業中具有極其重要的地位。現代物理學的各個分支,如高能物理、固體物理、核物理、天體物理和激光物理等都是以量子力學為基礎,并且已經滲透到化學和生物學等其他學科。同時量子理論還具有巨大的實用價值,半導體器件和材料、激光技術、原子能技術和超導材料等都是以量子力學原理為基礎的。
通過對量子力學的學習,學生可以掌握現代科學技術最重要的基礎理論,還可以提高科學素質和思想素質,但是量子力學中的概念和解決問題的方法與經典物理有著本質的不同。學生普遍反映量子力學抽象、枯燥、難理解、抓不住重點,學習起來非常困難。針對以上問題,我對教學進行了思考和探討,采用了一些切實可行的措施,提高了學生的學習興趣,使學生更好地掌握了量子力學知識,同時培養了學生的創新思維。
一、教學過程中存在的問題
在量子力學的教學過程中,我發現以下幾個問題。
1.量子力學是一門十分抽象的課程,其中許多概念、原理都不好理解,并且量子力學從概念到解決問題的方法跟經典物理有著根本性的區別,但是很多學生習慣性地用經典的思想去理解量子力學,這樣就不自覺地增加了難度。比如“波粒二象性”,經典物理認為波動性和粒子性是互不相關的、相互獨立的,而量子力學認為波動性和粒子性是微觀粒子同時具備的兩種屬性。
2.學習量子力學,數學知識是必不可少的。量子力學中有著繁雜的數學知識,例如,數學分析中的微積分,代數學中的矩陣論,數學物理方程的微分方程,復變函數,等等。在教學過程中發現,不少學生對已學過的數學知識掌握得不是很牢固,在推導公式的過程中忘記了公式所描述的物理內涵,影響了對量子力學知識的理解。
3.由于量子力學的課時緊張,教學過程中采用了傳統的教學模式,由教師到學生的“單向傳授”的教學形式。學生失去了主體地位,只能被動地接受知識,學習的興趣和積極性不高,導致教學效率降低。
二、量子力學的教學方法改革
1.采用多種教學手段相結合的教學模式。由于量子力學的內容抽象難懂,又是建立在一系列基本假定的基礎之上,不少學生很難接受,甚至認為這門課程沒有用處。在量子力學的教學過程中,由單一的教師講授過渡到板書、錄像、課件、演示實驗等各種手段相結合的教學模式,將圖、文、聲、像等信息有機地組合在一起,形象、直觀、生動,容易激發學生的學習興趣。同時,通過網絡技術,學生可以享受到本校的教學資源,還可以突破空間的限制,享受到全國高水平的教學資源,從而豐富學生的資料庫,也為各學校的師生討論交流提供一個很好的平臺。
隨著科學技術的迅速發展,知識更新非???。在教學中,教師應及時將與量子力學相關的科技前沿和高新技術引入教學中,介紹與量子力學密切相關的課題,闡明科學技術中所蘊含的量子力學原理。如我們在講解一維無限深勢阱時,將其與半導體量子阱和超晶格這一科學前沿相聯系;在講解隧道效應時,將其與掃描隧道顯微鏡相聯系,進而介紹掃描探針操縱單個原子的實驗。同時在教學中,我們理論聯系實際,多介紹量子力學知識與材料科學、生命科學、環境科學等其他學科之間的密切聯系,重點介紹在材料科學中的廣泛應用,包括新材料設計、開發新材料、材料成分和結構分析技術等。通過這種方式,學生對這一部分的知識有了直觀的認識,從而不再感到量子力學的學習枯燥無味,同時也提高了接受新知識、學習新知識的意識和能力。
2.結合數學知識,把物理情境的建立作為教學的重點。量子力學可以說無處不數學,這門學科對高級數學語言的成功運用,正是它高深與完美的體現。數學雖然加深了物理問題的難度,卻維護了理論的嚴謹性和科學性。當然這不是要求老師從頭到尾、長篇冗重地推演計算,合理地修剪枝杈既能讓學生抓住重點,又免使學生感到量子力學只是數學公式的推導。對于學習量子力學的同學,可以著重于對物理概念的剖析和物理圖像的描繪,繞過數學分析難點,通過簡化模型、對稱性考慮、極限情形和特例、量綱分析、數量級估計、概念延拓對比等得出結論。定量分析盡量只用簡單的高數和微積分、常見的常微分方程,對復雜的數學推導可以不做講解,只對少數優秀生或感興趣的同學個別輔導。例如,在求解本征方程時,只介紹動量、定軸轉子能量本征值的求解;對無限深勢阱情況,薛定諤方程可類比普通物理中的簡諧振動方程;對氫原子和諧振子的能量本征值問題,只重點介紹思路、方法和結論,不作詳細推導。
3.充分應用類比法,講述量子力學。經典力學是量子力學的極限情況,在教授過程中,應盡可能找到“經典”對應,應用類比方法講述量子力學中抽象的概念和物理圖像,有助于正確理解量子力學的物理圖像。用光的單縫、雙縫衍射、干涉說明光的波動性,用光電效應、康普頓散射說明光的粒子性,運用這種方法有利于學生掌握光的波粒二象性。在將量子力學與經典力學類比的同時,還要清楚量子力學與經典力學在觀念、概念和方法上的區別。例如,經典力學用位矢、速度描述物體的狀態,而量子力學用波函數描述系統狀態;經典力學用牛頓第二定律描述狀態變化,量子力學用薛定諤方程描述狀態的變化。另外對于量子力學中的波粒二象性、態迭加原理、統計原理等都要與經典力學中的相關概念區分開來,類比說明,闡明清楚其真正內涵。
4.改變傳統教學模式,采用以學生為主體的教學模式。量子力學的現代教學多以“教師講授”為主,同時配合多媒體課件輔助教學,教學模式較傳統教學有所變化,多媒體課件教學雖然能夠在一定程度上激發學生的學習興趣,但仍然是“填鴨式”的教學法,沒能真正地改變傳統教學的弊端。因此在教學過程中,要避免課堂成為教師的一言堂,鼓勵學生提問,激發學生的逆向思維和非規范性思維等,通過創設問題情境使師生互動起來,提高學生學習量子力學的積極性,加深學生對這門課程的理解。還要組織學生開展相關課題討論,引導學生自主能動地思考,激發學生的學習興趣。
三、結語
“量子力學”是物理類專業基礎課程中教學的難點和重點,建立新的教學模式,有利于學生學習、理解和掌握這門課程。
參考文獻:
[1]曾謹言.量子力學[M].科學出版社,1997.
[2]周世勛.量子力學教程[M].高等教育出版社,1979.
20世紀70年代,瓦謝爾從理論上提出,可以用計算機模擬、以量子力學和分子力學結合的方式描述化學過程,后來被稱為“多尺度模型”。這一理論得到了廣泛的應用。
其實,多尺度模型就是我們常用的MM/QM模型。我們知道,原子是化學反應的基本微粒,它由原子核和核外電子共同構成。我們在做分子模擬時,分子力學(MM)算起來比較快,但只能處理到原子、基團這個層面,而量子力學(QM)雖然考慮到了電子和原子核,但計算起來相當復雜。
三位科學家的開創性,在于打開了“勢不兩立”的分子力學與量子力學之間的一扇窗,將兩者結合起來。如今,當科學家在模擬分子反應的過程時,他們會在必要時借助計算機的力量?;瘜W反應系統核心的計算基于量子物理學,而在遠離反應核心區域的地方,模型計算則基于經典物理學,在最外的幾層,原子和分子甚至混合在一起,形成同質的物體。通過這些理論簡化,我們可以對大型的化學系統進行模擬計算。
多尺度模型的應用與前景
“分而治之”描述化學反應
化學反應是一個微觀過程,許多化學反應的發生極為迅速,我們肉眼難以快速捕捉到。比如,生命體中的核糖從無規則的多肽鏈發展到穩定的蛋白質結構所用時間為微秒級。如果掃描這一過程,耗費的時間將是天文數字。
因此,傳統上用實驗手段描述出反應過程的每一個步驟幾乎是不可能實現的。量子力學的描述小而精,分子力學的描述寬泛但精度不高。如果都用高精度的方法來描述化學過程,計算將難以進行。所以,多尺度組合的方法便成了研究者最好的選擇,這與中國古代“分而治之”的哲學思想類似。
掀起科學研究新篇章
化學是一門以實驗為基礎的學科,三位科學家基于量子力學、經典力學以及混合量子—經典力學提出的理論模型對化學的定量化研究、化學理論研究以及實驗研究都有非常重要的指導作用。例如,通過計算機模擬的方法來研究蛋白質分子的運動和酶的催化反應機理,發展分子動力學模擬方法,研究復雜化學體系的運動規律等。
同時,該模型還被應用于計算化學、生物化學、生物物理學以及物理學與應用數學,是典型的跨學科成果。這一模型的提出與應用,對化學學科的推進、化學與生物學科交叉發展都發揮了相當大的作用,具有里程碑式的意義。
研究前景可觀
對于該領域的研究,我國的起步相對較晚,但自2000年之后,隨著國家科研實力的增強,這一領域研究已經取得了較大進步。例如,2012年9月,北京師范大學化學系教授方維海帶領的課題組便采用高精度的量子化學計算對螢火蟲發光機理進行了進一步探索,提出了漸進可逆電荷轉移引發熒光的新理論,首次在電子態的水平闡明了螢火蟲生物發光的化學起源。
此外,三位科學家的研究成果,已經應用于廢氣凈化及植物的光合作用研究中,并將用于優化汽車催化劑、藥物和太陽能電池的設計中。
經典力學與量子力學
經典力學是力學的一個分支。經典力學是以牛頓運動定律為基礎,在宏觀世界和低速狀態下,研究物體的運動。經典力學又分為靜力學(描述靜止物體)、運動學(描述物體運動)和動力學(描述物體受力作用下的運動)。
量子力學是研究微觀粒子的運動規律的物理學分支學科,主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質,它與相對論一起構成了現代物理學的理論基礎,而且在化學等相關學科和許多近代技術中也得到了廣泛的應用。
(敬瑞玲)
試一試
1. 我們知道,經典力學是以牛頓運動定律為基礎,在宏觀世界和低速狀態下,研究物體的運動。那么你所了解的牛頓運動定律有哪些呢?
2. 量子力學主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質,根據所學的知識回答下列問題。
(1)原子是由什么構成的?
(2)氫原子呈什么電性?為什么?
(3)畫出Na原子的原子結構示意圖。
中圖分類號:O413.1 文獻標識碼:A 文章編號:1000-0712(2016)03-0005-03
量子力學是近代物理學的基礎,并且其應用領域已延伸至化學、生物等許多交叉學科當中,這一課程已成為當今大學生物理教學中一個極為重要的組成部分.由于量子力學主要是描述微觀世界結構、運動與變化規律的學科,微小尺度下的許多自然現象與人們日常生活經驗相距甚遠,量子力學的概念有悖于人們的直覺,難以被初學者接受.如果在教學中能夠結合具體的物理實驗,從現象到本質引導學生思考,就可以使抽象的量子概念落實到對具體實驗現象的歸納總結上來.偏振光實驗是一個現象直觀而且學生容易操作的普通物理實驗,在學生掌握的已有知識基礎上,進行新內容的教學,符合初學者的認知規律.利用光的偏振現象來闡述量子力學基本概念已被一些國內外經典教材采納,如物理學大師狄拉克所著的《量子力學原理》[1],費因曼所著的《費因曼物理學講義》[2],曾謹言教授所著的《量子力學卷1》[3],趙凱華、羅蔚茵教授合著的《量子物理》[4]等教材.在本文中,筆者結合自己的教學體驗,著重從可觀測量和測量的角度來考慮問題,在以上經典教材的基礎上,進一步整理和挖掘光子偏振所能體現的量子力學基本概念.從量子力學的角度對偏振實驗現象進行分析,使同學們對態空間、量子力學表象、波函數統計解釋、態疊加原理等量子力學概念有一個直觀形象的認識,領會量子力學若干基本假定的內涵思想.最后,從量子角度分析了一個有趣的偏振光實驗,加深學生對量子力學基本概念的理解,并展示了量子力學的奇妙特性.
1偏振光實驗的經典解釋
如圖1(a)所示,沿著光線傳播的方向,順次擺放兩個偏振片P1、P2.光束經過P1后變為與其透振方向一致且光強為I0的偏振光.兩偏振片P1和P2的透振方向之間夾角為θ,由馬呂斯定律可知,透過偏振片P2的光的強度為I0cos2θ.按照經典的光學理論,此現象可理解如下:在一個與光傳播方向垂直的平面內選定一個xy平面直角坐標系,這里為了描述問題的方便,選定x軸沿P2的透振方向.如圖1(b)所示,透過偏振片P1的光電場矢量E可分解為兩個分量:沿x方向振動的電場矢量Ex和沿y方向振動的電場矢量Ey.偏振光照射到P2偏振片時,投影到y方向的電場矢量被吸收,投影到x方向的電場矢量透過,振幅增加了一個常數因子cosθ,因而強度變為原來的cos2θ倍,這正是馬呂斯定律所給出的結果.
2偏振光實驗體現的量子力學概念
下面我們由偏振光的實驗現象出發,引出量子態、態空間等量子概念,并用量子力學的語言來描述單個光子與偏振片發生相互作用的過程,討論在多個光子情況下的量子行為與馬呂斯定律的一致性.
2.1量子態
從實驗得知,當線偏振光用于激發光電子時,激發出的光電子分布有一個優越的方向(與光偏振方向有關),根據光電效應,每個電子的發射對應吸收一個光子,可見,光的偏振性質是與它的粒子性質緊密聯系的,人們必須把線偏振光看成是在同一方向上偏振的許多光子組成,這樣我們可以說單個光子處在某個偏振態上.沿x方向偏振的光束里,每個光子處在|x〉偏振態,沿y方向偏振的光束中,每個光子處在|y〉偏振態.假設我們在實驗中把光的強度降到足夠低,以至于光子是一個一個到達偏振片的.在圖1所示的例子中,通過P1偏振片的光子處在沿P1透振方向的偏振態上,如果P2與P1透振方向一致(θ=0),則此光子完全透過P2,如果P2與P1透振方向正交(θ=π/2),則被完全吸收.如果P1與P2透振方向之間角度介于兩者之間,會是一種什么樣的情形,會不會有部分光子被吸收,部分光子透過的情況發生,但是實驗上從來沒有觀察到部分光子的情形,只存在兩種可能的情況:光子變到量子態|y〉,被整個吸收;或變到量子態|x〉,完全透過.下面我們用量子力學的語言來描述單個光子與偏振片發生相互作用的過程,引入量子測量、態空間、表象、態疊加原理、波函數統計解釋等量子概念.
2.2量子測量、態空間、表象
單個光子與偏振片發生相互作用的過程,可以看成是一個量子測量的過程,偏振片作為一個測量裝置,迫使光子的偏振態在透振方向和與其相垂直的方向上作出選擇,測量的結果只有兩個,透過或被吸收,透過光子的偏振方向與透振方向一致,被吸收光子的偏振方向與透振方向垂直,可見光子經過測量后只可能處在兩種偏振狀態,這正是量子特性的反應.在量子力學中,針對一個具體的量子體系,對某一力學量進行測量,測量后得到的值是這一力學量的本征值,我們稱它為本征結果,相應的量子態坍縮到此本征結果所對應的本征態上,所有可能的本征態則構成一組正交、規一、完備的本征函數系,此本征函數系足以展開這個量子體系的任何一個量子態.很自然,我們在這里把經過偏振片測量后,所得到的兩種可能測量結果(透過或吸收)作為本征結果,它們分別對應的兩種偏振狀態,此兩種偏振狀態可以作為正交、規一、完備的函數系,組成一個完備的態空間,任何偏振態都可以按照這兩種偏振態來展開,展開系數給出一個具體的表示,這就涉及到量子力學表象問題.在量子力學中,如果要具體描述一個量子態通常要選擇一個表象,表象的選取依據某一個力學量(或力學量完備集)的本征值(或各力學量本征值組合)所對應的本征函數系,本征函數系作為正交、規一、完備的基矢組可以用來展開任何一個量子態,展開系數的排列組合給出某一個量子態在具體表象中的表示.結合我們的例子,組成基矢組的兩種偏振狀態取決于和光子發生相互作用的偏振片,具體說來是由偏振片的透振方向決定.在具體分析問題時,為了處理問題的方便,光子與哪一個偏振片發生相互作用,在數學形式上,就把光子的偏振狀態按照此偏振片所決定的基矢組展開,這涉及到怎么合理選擇表象的問題.
2.3態疊加原理、波函數統計解釋
以上簡單的試驗也可以作為一個形象的例子來說明量子力學中的態疊加原理.態疊加原理的一種表述為[5]:設系統有一組完備集態函數{φi},i=1,2,...,t,則系統中的任意態|ψ〉,可以由這組態函數線性組合(疊加)而成(1)另一種描述為:如果{φi},i=1,2,...,t是體系可以實現的狀態(波函數),則它們的任何線性疊加式總是表示體系可以實現的狀態.在我們的例子中,任何一個偏振片所對應的透振態和吸收態構成完備集態函數,任何一個偏振態都能夠在以此偏振片透振方向所決定的基矢組中展開,參照圖1所示,通過偏振片P1的偏振態可以在以偏振片P2透振方向所決定的基矢組{|x〉,[y)}中表示為(2)相反,|x〉、|y〉基矢的任意疊加態也都是光子可能實現的偏振態.量子力學還假定,當物理體系處于疊加態式(1)時,可以認為體系處于φi量子態的概率為|ci|2.從前面的分析我們知道,當用偏振片P2對偏振態|P1〉進行測量時,此狀態隨機地坍縮到|x〉偏振態或|y〉偏振態,坍縮到|x〉偏振態的概率為cos2θ,也就是單個光子透過偏振片的概率,多次統計的結果恰好與馬呂斯定律相對應,這充分體現了波函數的概率統計解釋.
3典型例子
在教學中我們可以引入一個有趣形象的例子,進一步加深對量子力學基本概念的理解.如圖2(a)所示,一束光入射到兩個順序排列的偏振片上,偏振片P3的透振方向相對于偏振片P1的透振方向順時針轉過90°角,我們不妨在一個與光傳播方向垂直的平面內選定一個xy平面直角坐標系,P1的透振方向沿x軸,P3的透振方向沿y軸.光通過偏振片P1后變成光強為I0的偏振光,偏振方向與偏振片P1透振方向平行,但與P3的透振方向垂直,則光完全被偏振片P3吸收,不能透過.下面我們將看到一個有趣的現象,在偏振片P1和偏振片P3間插入一個偏振片P2,其透振方向在P1和P3之間,這時光竟可以透過P3偏振片.對此試驗,我們可由馬呂斯定律給出經典的解釋.我們不妨設P2的透振方向相對于P1順時針轉過45°角,通過偏振片P1后,變為光強是I0的偏振光,且偏振方向與P1透振方向一致;再通過偏振片P2后,光強變為I0/2,偏振方向沿順時針轉過45°角,與偏振片P2透振方向一致;最后通過偏振片P3后,光強進一步減弱為I0/4,偏振方向又沿順時針改變45°角,與偏振片P3透振方向一致.可以看到一個有趣的現象,雖然介于偏振片P1和P2間的光束其偏振方向與偏振片P3的透振方向正交,但最后透過偏振片P3的光束其偏振方向卻恰恰沿偏振片P3的透振方向,這正是中間偏振片P2所起的作用.下面用我們前面分析偏振光與偏振片相互作用過程中,所建立起來的量子概念給出具體解釋.取直角坐標系xy,x軸沿偏振片P1的透振方向,基矢組為{|x〉,[y)};由偏振片P2的透振方向所決定的基矢組為{|x'〉,[y')},其透振方向沿x'方向,如圖3所示,兩組基矢之間的關系可表示為(3)由偏振片P3所決定的基矢組仍為{|x〉,|y〉},不過透過的光子處在|y〉基矢態.光子透過偏振片P1后,其偏振狀態處在|x〉態,由式(3),此狀態可以按P2的基矢組展開為(4)根據式(4),經過P2偏振片的測量,光子有1/2的概率坍縮到|x'〉態,光子透過P2,有1/2的概率坍縮到|y'〉態,光子被吸收.由式(3),|x'〉態在由偏振片P3所決定的基矢組同樣展開為3的測量下,偏振狀態發生改變,有1/2的概率坍縮到|y〉態,透過偏振片,有1/2的概率坍縮到|x〉態,被偏振片吸收,總體來說透過偏振片P1的光子有1/4的概率透過偏振片P3,與經典的馬呂斯定律相一致.特別注意到光子透過偏振片P1后,狀態為|x〉態,與|y〉態正交,沒有|y〉態的組分,但光子透過偏振片P3后卻正處在|y〉態,這充分體現了測量可以使量子態改變的量子假定,展示了量子測量的奇妙特性.
4總結
結合對偏振光實驗的量子解釋,我們分析了若干重要的量子力學概念.但嚴格說來,光子的問題不屬于量子力學問題,只有在量子場論中才能處理.采用光子的偏振情形來討論某些量子概念,理論上雖稍欠嚴謹,但如上文所述,確實能夠直觀形象地反映量子力學中的若干基本假定,使抽象的量子力學概念落實到對具體實驗的分析中來,易于被初學者接受,我們不妨在學生開始學習量子力學時引入此例,有助于學生理解抽象的量子概念,領會量子力學的思維方式.
參考文獻:
[1]狄拉克.量子力學原理[M].北京:科學出版社,1966.
[2]費因曼.費因曼物理學講義[M].上海:上??茖W出版社,2005.
[3]曾謹言.量子力學卷1.[M].北京:科學出版社,2006.
中圖分類號:G642.0 文獻標志碼:A 文章編號:1674-9324(2013)50-0212-02
一、概論
量子力學從建立伊始就得到了迅速的發展,并很快融合其他學科,發展建立了量子化學、分子生物學等眾多新興學科。曾謹言曾說過,量子力學的進一步發展,也許會對21世紀人類的物質文明有更深遠的影響[1]。
地處西部地區的貴州省,基礎教育水平相對落后。表1列出了2005年到2012年來的貴州省高考二本理科錄取分數線,從中可知:自2009年起二本線已經低于60%的及格線,并呈顯越來越低的趨勢。對于地方性新升本的普通本科學校來講,其生源質量相對較低。同時,在物理學(師范)專業大部分學生畢業后的出路主要是中學教師、事業單位一般工作人員及公務員,對量子力學的直接需求并不急切。再加上量子力學的“曲高和寡”,學生長期以來形成學之無用的觀念,學習意愿很低。在課時安排上,隨著近年教育改革的推進,提倡重視實習實踐課程、注重學生能力培養的觀念的深入,各門課程的教學時數被壓縮,量子力學課程課時從72壓縮至54學時,課時被壓縮25%。
總之,在學校生源質量逐年下降、學生學習意愿逐年降低,且課時量大幅減少的情況下,教師的教學難度進一步增大。以下本人結合從2005至10級《量子力學》的教學經驗,談一下教學方面的思考。
二、依據學生情況,合理安排教學內容
1.根據班級的基礎區別化對待,微調課程內容??紤]到我校學生的實際情況和需要,教學難度應與重點院校學生有差別。同時,通過前一屆的教學積累經驗,對后續教學應有小的調整。在備課時,通過微調教學內容來適應學習基礎和能力不同的學生。比如,通過課堂教學及作業的反饋,了解該班學生的學習狀態,再根據班級學習狀況的不同,進行后續課程內容的微調。教學中注重量子力學基本概念、規律和物理思想的展開,降低教學內容的深度,注重面上的擴展,進行全方位拓寬、覆蓋,特別是降低困難題目在解題方面要求,幫助學生克服學習的畏難心理。
2.照顧班內大多數,適當降低數學推導難度。對于教學過程中將要碰到的數學問題,可采取提前布置作業的方法,讓學生主動去復習,再輔以教師課堂講解復習,以解決學生因為數學基礎差而造成的理解困難。同時,可以通過補充相關數學知識,細化推導過程,降低推導難度來解決。比如:在講解態和力學量的表象時[2],要求學生提前復習線性代數中矩陣特征值、特征向量求解及特征向量的斯密特正交化方法。使學生掌握相關的數學知識,這對理解算符本征方程的本征值和本征函數起了很大的推動作用。
3.注重量子論思想的培養。量子論的出現,推動了哲學的發展,給傳統的時空觀、物質觀等帶來了巨大的沖擊,舊的世界觀在它革命性的沖擊下分崩離析,新的世界觀逐漸形成。量子力學給出了一套全新的思維模式和解決問題的方法,它的思維模式跟人們的直覺和常識格格不入,一切不再連續變化,而是以“量子”的模式一份一份的增加或減少。地方高校的學生數學基礎較差,不愿意動手推導,學習興趣較低,量子力學的教學,對學生量子論思維方式的培養就顯得尤為重要。為了完成從經典理論到量子理論思維模式的轉變,概念的思維方式是基礎、是重中之重。通過教師的講解,使學生理解量子力學的思考方式,并把經典物理中機械唯物主義的絕對的觀念和量子力學中的概率的觀念相聯系起來,在生活中能夠利用量子力學的思維方式思考問題,從而達到學以致用的目的。
4.跟蹤科學前沿,隨時更新科研進展??茖W是不斷向前發展的,而教材自從編好之后多年不再變化,致使本領域的最新研究成果,不能在教材中得到及時體現。而發生在眼下的事件,最新的東西才是學生感興趣的。因此,我們可以利用學生的這種心理,通過跟蹤科學前沿,及時補充量子力學進展到教學內容中的方式,來提高學習量子力學的興趣。教師利用量子力學基本原理解釋當下最具轟動性的科技新聞,提高量子力學在現實生活中出現的機會,同時引導學生利用基本原理解釋現實問題,從而培養學生理論聯系實際的能力。
三、更新教學手段,提高教學效率
1.拓展手段,量子力學可視化。早在上世紀90年代初,兩位德國人就編制完成了名為IQ的量子力學輔助教學軟件,并在此基礎上出版了《圖解量子力學》。該書采用二維網格圖形和動畫技術,形象地表述量子力學的基本內容,推動了量子力學可視化的前進。近幾年計算機運算速度的迅速提高,將計算物理學方法和動畫技術相結合,再輔以數學工具模擬,應用到量子力學教學的輔助表述上,使量子力學可視化。通過基本概念和原理形象逼真的表述,學生理解起來必將更加輕松,其理解能力也會得到提高。
2.適當引入英語詞匯。在一些漢語解釋不是特別清楚的概念上,可以引入英文的原文,使學生更清晰的理解原理所表述的含義。例如,在講解測不準關系時,初學者往往覺得它很難理解。由于這個原理和已經深入人心經典物理概念格格不入,因此初學者往往缺乏全面、正確的認識。有學生根據漢語的字面意思認為,測量了才有不確定度,不測量就不存在不確定。這時教師引入英文“Uncertainty principle”可使學生通過英文原意“不確定原理”知道,這個原理與“測量”這個動作的實施與否并沒有絕對關系,也就是說并不是測量了力學量之間才有不確定度,不測量就不存在,而是源于量子力學中物質的波粒二象性的基本原理。
3.提出問題,引導學生探究。對于學習能力較強的學生,適當引入思考題,并指導他們解決問題,從而使學生得到基本的科研訓練。比如,在講解氫原子一級斯塔克效應時,提到“通常的外電場強度比起原子內部的電場強度來說是很小的”[2]。這時引入思考題:當氫原子能級主量子數n增大時,微擾論是否還適用?在哪種情況下可以使用,精確度為多少?當確定精度要求后,微擾論在討論較高激發態時,這個n能達到多少?學生通過對問題的主動探索解決,將進一步熟悉微擾論這個近似方法的基本過程,理解這種近似方法的精神。這樣不僅可以加深學生對知識點的理解,還可以得到基本的科研訓練,從而引導學生走上科研的道路。
4.師生全面溝通,及時教學反饋。教學反饋是教學系統有效運行的關鍵環節,它對教和學雙方都具有激發新動機的作用。比如:通過課堂提問及觀察學生表情變化的方式老師能夠及時掌握學生是否理解教師所講的內容,若不清楚可以當堂糾正。由此建立起良好的師生互動,改變單純的灌輸式教學,在動態交流中建立良好的教學模式,及時調整自己的教學行為。利用好課程結束前5分鐘,進行本次課程主要內容的回顧,及時反饋總結。通過及時批改課后作業,了解整個班級相關知識及解題方法的掌握情況。依據反饋信息,對后續課程進行修訂。
通過雙方的反饋信息,教師可以根據學生學習中的反饋信息分析、判定學生學習的效果,學生也可以根據教師的反饋,分析自己的學習效率,檢測自己的學習態度、水平和效果。同時,學生學習行為活動和結果的反饋是教師自我調控和對整個教學過程進行有效調控的依據[6]。
四、結論
量子力學作為傳統的“難課”,一直是學生感到學起來很困難的課程。特別是高校大擴招的背景下,很多二本高校都面臨著招生生源質量下降、學生學習意愿不高的現狀,造成了教師教學難度進一步增大。要增強學生的學習興趣,提高教學質量,教師不僅要遵循高等教育的教學規律,不斷加強自身的學術水平,講課技能,適時調整教學內容,采取與之相對應的教學手段,還需要做好教學反饋,加強與學生的溝通交流,了解學生的真實想法,并有針對性的引入與生活、現實相關的事例,提高學生學習量子力學的興趣。
參考文獻:
[1]曾謹言.量子力學教學與創新人才培養[J].物理,2000,(29):436.
[2]周世勛,陳灝.量子力學教程[M].高等教育出版社,2009:101.
[3]楊林.氫原子電子概率分布可視化及其性質研究[J].綏化學院學報,2009,(29):186.
[4]常少梅.利用Mathematica研究量子力學中氫原子問題[J].科技信息,2011,(26):012.
(9)量子力學與經典物理學的矛盾——盧瑟福與玻爾 無
(16)量子力學發展過程中的黑暗之路——玻爾—索末菲理論的弱點 陳應文
(25)微觀粒子運動規律的力學性質——德布羅意與波粒二象性 何玉元
(31)科學家的理念與激情——薛定諤與海森堡 李桂華
(39)新量子力學的建立——微觀粒子的二象性 高大海
(43)自然界對物理思維的啟示 周勇
中圖分類號:O413 文獻標識碼:A 文章編號:1671-7597(2011)1210017-01
1 表象的引入并給出表象定義
1.1 表象的引入
一般文獻中常用到坐標表象,動量表象,能量表象,粒子數表象等詞,實際上涉及到態的表象,力學量的表象,應注意所用的表象的意義。
量子力學與經典力學在描述物理體系的方法上截然不同,其根本原因在于微觀體系的運動規律具有不確定性和統計規律,德布羅意的波粒二象性學說引導人們找到了描述微觀體系狀態的恰當方法,根據統計詮釋,波函數作為一個復合函數本身并沒有物理意義,如果知道了波函數,粒子處于空間某點的幾率,力學量的平均值均可求得,因此說波函數完全描述粒子體系的運動狀態,量子力學的另一種基本假設滿足態疊加原理:
(1)
是體系的可能態, 為發現體系處于相應的本征態的概率滿足:
此式的物理意義是量子體系的一般狀態是所有本征態的線性疊加。
某一力學量的本征函數系所構成的希爾伯特空間就構成了這一力學量的表象,在量子力學中研究不同問題需要采用相應的表象,就如同經典物理學中適當選取坐標系研究具體問題一樣,表象變換就是Hilert空間中的“坐標變換”,是量子力學中一個最基本問題。
1.2 表象的定義
關于表象的定義有許多種,比如用能量就是能量表象,用動量就是動量表象,這種說法比較通俗易懂。
假設體系的狀態在坐標表象中用波函數 描寫,而知道動量的本征函數組成完全系,由量子力學展開公式得 ,設 是歸一化波函數,則由歸一化條件很容易證明 ,
是在 所描寫的狀態中,測量粒子位置,所得結果在 范圍內的幾率;而 是在同一狀態中,測量粒子動量,所得結果在
范圍的幾率,由上可見,當 已知, 就完全確定;反之,
已知, 就完全確定,所以, 描寫的是同一狀態
是這個狀態在坐標表象下的波函數,而 是同一狀態在動量表象的波函數。
2 關于表象及其變換的理解
在經典物理中,不同坐標系之間可以互相變換,例如,直角坐標系(x,y,z)和球坐標系之間的變換關系:
;而量子力學中不同表象間也可以進行相互變換,如某一力學量的表象可以表示一個n行1列矩陣,而力學量在某一具體表象下對應于某個矩陣,這是一個厄米矩陣,如某一力學量在一自身表象下是由該力學量本值所構成的對角矩陣,力學量在不同表象下的矩陣形式是不同的。
2.1 從幾何坐標的角度來理解表象及其變換
我們知道量子態可以在各種表象中表示,只需將該態波函數用該表象的本征函數系展開,在量子力學中,把狀態 看成一個態矢量,選擇一個特定的Q表象,就相當于選取一個特定的坐標系,在量子力學中, 的本征函數有無限多,稱態矢量所在的空間是無限維的希爾伯特空間,我們知道在矢量中,一個矢量在不同坐標系中的展開可以相互轉換,而量子力學則借助么正矩陣來實現不同表象間的變換。
量在兩個基底下坐標間的關系X=MY。
2.2 從物理的角度來理解表象及其變換
在經典力學中,描述一個物體力學性質的物理量,無非是它的位移、速度、加速度、動量和能量等,我們常用坐標來表示質點的位置,為方便起見,設物體在一維空間中運動,某時刻位于x處,由于經典力學遵循牛頓運動定律,這是一種精確的因果關系,即只要給定宇宙中每個粒子的初始速度,它在以后所有時刻的行為,就都由牛頓運動定律確定,所以,若已知 ,只要通過微分 和 ,就可以得到其它精確的物理量,當然,如果已知速度 ,加速度 ,動量 和動能 等,實際上,經典力學通過微分積分這樣的關系,實現了物理量之間的相互轉化。
而量子理論與經典理論暗示的物質本性之間有著本質的差別,尤其是微觀粒子的波粒二象性,使得量子理論中完全決定論不再適用,因此,在量子力學中,物理體系的表示法是抽象化的,表象就是表示物理體系狀態的函數,并且這個函數用什么物理量來表示的問題,同時在量子力學中,各物理量之間也存在著一定的關系,使得我們也可以用其它的物理量來表示體系的狀態函數這就是表象變換,量子理論的不完全確定性,使得量子態并不像經典力學那樣具有確定物理量,如動量、坐標等,而只能給出力學量的幾率分布。
3 總結
量子力學之所以難理解,一方面是由于它的描述方法的特殊,導致許多結論與我們的經驗常識嚴重抵觸,另一方面就在于表象及表象變換的抽象,波函數的疊加原理是表象及表象變換的基礎,要正確理解表象就要求我們深入理解波函數及波函數的疊加原理,選擇一種表象,就相當于選擇了一組基矢,由于微觀粒子具有波粒二象性,物理量的可測量值只作為一種潛在的可能性而存在,這使得經典理論的完全決定性不再適用,而只能采用一種抽象的表示法表象來表述物理體系的行為,并通過么正變換來實現不同表象間的變換。
參考文獻:
[1]周世勛,量子力學教程[M].北京:高等教育出版社,1979.
[2]劉連濤,理論物理簡明教程[J].上海:華中師范大學大學出版社,1979.
[3]玻姆,量子理論[M].北京:商務印書館,1982.
[4]宋鶴山,量子力學[M].北京:大連理工出版社,2004.
要說明科學語言何以能成為這樣的中介,需要先對科學的認識結構加以分析。
作為一種形式化理論的近現代科學,其目的是力圖摹寫客觀實在。這種摹寫的認識論前提是一個外在的、自為的客體和作為其思維對立面的內在的主體間的雙重存在。這一認識論前提在科學認識方面衍生出一個更實用的前提,就是把客體看作是一種自在的“像”或者“結構”(包括動態結構,比如動力學所概括的各種關系和過程)。
這一自在的實在具有由它的“自明性”所保證的嚴格規范性。這種自明性只在涉及存在與意識的根本關系時才可能引起懷疑。而科學是以承認這種自明性為前提的。因此科學實際就是關于具有自明性的實在的思維重構。它必須限于處理自在的實在,因為科學的嚴格規范性(主要表現為邏輯性)是由實在的自明性所保證的,任何超越實在的描述都會破壞這種描述的前提。這一點對稍后關于量子力學的討論非常重要。
上述分析表明,科學的嚴格規范性并非如有唯理論傾向的觀點所認為的那樣,是來自思維,也并非如經驗論觀點所認為的來自具體手段對經驗表象的操作,也并不象當代某些科學哲學家所認為的純粹出于主體間的共同約定??茖W的最高規范是存在在客觀實在中的,是來自客體的自明性。一切具體手段只是以這種規范為目標而去企及它。
在科學認識活動中,不論是一個思維過程還是一個實驗過程,如果其中缺失了語言過程,那就什么意義都不會有??茖W語言與人類思維形態固然有很大的關系,但是它們可能在一個很高的層次上有著共同的根源。就認識的高度而言,思維形態作為人類的一種意識現象,對它進行本質的追究,至少目前還不能完全放在客觀實在的背景上。因此,在科學認識的層次上,思維形態完全可以被視為相對獨立的東西。而科學語言則是明確地被置于實在自身這一背景之中的。這就使我們實際上可以把科學語言看作一種知識,它與系統的科學知識具有完全相同的確切性,即它首先是與實在自身相諧合,然后才以這種特殊性成為思維與對象之間的中介。這才能保證,既使科學語言所述說的科學是關于實在的確切圖景,又使思維活動具備與實在相聯絡的手段。
科學語言作為一種知識所具備的上述特殊性,使它成為客觀實在圖景構成的基本要素,或科學知識的“基元”。思維形態不能獨立地形成知識,但思維形態卻提供某種方式,使科學語言所包含的知識基元獲得某種特定的加成和組合,從而構成一種系統化的理論。這就是語言在認識中的中介作用。由于任何事物都必須“觀念地”存乎人的意識中,才能為人的心智所把握,所以,在這個意義上,一個認識過程就是一個運用語言的過程。
二、數學語言
數學語言常常幾乎就是科學語言的同義詞。但實際上,科學語言所指的范圍遠比數學語言的范圍大,否則就不會出現量子力學公式的解釋問題。在自然科學發生以前,數學所起的作用也還不是后世的那種對科學的敘錄。只是由于精密推理的要求所導致的語言理想化,才推進了數學的應用。但歸根究底,數學與前面說的那種合乎客觀實在的知識基元是不同的。將數學用作科學的語言,必須滿足一個條件,即數學結構應當與實在的結構相關,但這一點并不是顯然成立的。
愛因斯坦曾分析過數學的公理學本質。他說,對一條幾何學公理而言,古老的解釋是,它是自明的,是某一先驗知識的表述,而近代的解釋是,公理是思想的自由創造,它無須與經驗知識或直覺有關,而只對邏輯上的公理有效性負責。愛因斯坦因此指出,現代公理學意義上的數學,不能對實在客體作出任何斷言。如果把歐幾里德幾何作現代公理學意義上的理解,那么,要使幾何學對客體的行為作出斷言,就必須加上這樣一個命題:固體之間的可能的排列關系,就象三維歐幾里德幾何里的形體的關系一樣?!?〕只有這樣,歐幾里德幾何學才成為對剛體行為的一種描述。
愛因斯坦的這種看法與上文對科學語言的分析是基本上相通的。它可以說明,數學為什么會一貫作為科學的抽象和敘錄工具,或者它為什么看上去似乎具有作為科學語言的“先天”合理性。
首先,作為科學的推理和記載工具的數學,實際上是從思維對實在的一些很基本的把握之上增長起來的。歐幾里得幾何學中的“點”、“直線”這樣一些概念本身就是我們以某種方式看世界的知識。之所以能用這些概念和它們之間的關系去描繪實在,是因為這些“基元”已經包含了關于實在的信息(如剛體的實際行為)。
其次,數學體系的那種嚴密性其實主要是與人類思維的屬性有關,盡管思維的嚴密性并不是一開始就注入了數學之中。如前所述,思維的嚴密性是由實在的自明性來決定的,是習得的。這就是說,數學之所以與實在的結構相關,只是因為數學的基礎確切地說來自這種結構;而數學體系的自洽性是思維的翻版,因而是與實在的自明性同源的。
由此可見,數學與自然科學的不同僅表現在對于它們的結果的可靠性(或真實性)的驗證上。也就是說,科學和數學同樣作為思維與實在相互介定的產物,都有可能成為對實在結構的某種描述或“偽述”,并且都具有由實在的自明性所規定的嚴密性。但數學基本上只為邏輯自治負責,而科學卻僅僅為描述的真實性負責。
事實正是如此。數學自身并不代表真實的世界。它要成為物理學的敘錄,就必須為物理學關于實在結構的真實信息所重組。而用于重組實在圖景的每一個單元,實際上是與物理學的基本知識相一致的。如果在幾何光學中,歐幾里德幾何學不被“光線”及其傳播行為有關的概念重組,它就只是一個純粹的形式體系,而對光線的行為“不能作出斷言”。非歐幾何在現代物理學中的應用也同樣說明了這一點。
三、物理學語言
雖然物理學是嚴格數學化的典范,但物理學語言的歷史卻比數學應用于物理學的歷史要久遠得多。
在認識的邏輯起點上,僅當認識論關系上一個外在的、恒常的(相對于主體的運動變化而言)對象被提煉和廓清時,才能保證一種僅僅與對象自身的內在規定性有關的語言描述系統成為可能。對此,人類憑著最初的直覺而有了“外部世界”、“空間”、“時間”、“質料”、“運動”等觀念。顯然,這些觀念并非來自邏輯的推導或數學計算,它是人類世代傳承的關于世界的知識的基元。
然后,需要對客觀實在進行某種方式的剝離,才能使之通過語言進入我們的觀念。一個客觀實在,比如說,一個電子,當我們說“它”的時候,既指出了它作為離散的一個點(即它本身),又指出了它身處時空中的那個屬性。而后一點很重要,因為我們正是在廣延中才把握了它的存在,即從“它”與“其它”的關系中“找”出它來。
當我們按照古希臘人(比如亞里士多德)的方式問“它為什么是它”時,我們正在試圖剝離“它”之所以為“它”的屬性。但這個屬性因其離散的本質,在時空中必為一個“奇點”,因而不能得到更多的東西。這說明,我們的語言與時空的廣延性合若符節,而對離散性,即時空中的奇點,則無法說什么。如果我們按照伽利略的方式問“它是怎樣的”時,我們正是在描繪它與廣延有關的性質,即它與其它的關系。這在時空中呈現為一種結構和過程。對此我們有足夠的手段(和語言)進行摹寫。因為我們的語言,大多來自對時空中事物的經驗。我們運用語言的主要方式,即邏輯思維,也就是時空經驗的抽象和提升。
可見,近現代物理學語言是一種關于客觀實在的時空形式及過程的語言,是一種廣延性語言。幾何學之所以在科學史上扮演著至為重要的角色,首先不在于它的嚴格的形式化,而在于它是關于實在的時空形式及過程的一個有效而簡潔的概括,在于與物理學在面對實在時有著共同的切入點。
上述討論表明了近現代物理學語言格式包含著它的基本用法和一個根深蒂固的傳統,這是由客觀實在和復雜的歷史因素所規定的。至為關鍵的是,它必須而且只是關于實在的時空形式及過程的描述??梢韵胂?,離開了這種用法和傳統,“另外的描述”是不可能在這種語言中獲得意義的。而這正是量子力學碰到的問題。
四、量子力學的語言問題
上文說明,在描摹實在時,人類本是缺乏固有的豐富語言的。西方自古希臘以來,由于主、客體間的某種相互介定而實現了有關實在的時空形式和過程的觀念及相應的邏輯思維方式。任何一種特定的語言,隨著時代的變遷和認識的深入,某些概念的含義會發生變化,并且還會產生新的語言基元。有時,這樣的變化和增長是革命性的。但不可忽視的是,任何有革命性的新觀念首先必須在與傳統語言的關系中獲得意義,才能成為“革命性的”。在自然科學中,一種新理論不論提出多么“新”的描述,它都必須仍然是關于時空形式及過程的,才能在整體的科學語言中獲得意義。例如,相對論放棄了絕對時空、進而放棄了粒子的觀念,但代之而起的那種連續區概念仍然是時空實在性的描述并與三維空間中的經驗有著直接聯系。
量子力學的情況則不同。微觀粒子從一個態躍遷到另一個態的中間過程沒有時空形式;客體的時空形式(波或粒子)取決于實驗安排;在不觀測的情況下,其時空形式是空缺的;并且,觀測所得的客體的時空形式并不表示客體在觀測之前的狀態。這意味著,要么微觀實在并不總是具有獨立存在的時空形式,要么是人類無法從認識的角度構成關于實在的時空形式的描述。這兩種選擇都將超出現有的物理學語言本身,而使經典物理學語言在用于解釋公式和實驗結果時受到限制。
量子力學的這個語言問題是眾所周知的。波爾試圖通過互補原理和并協原理把這種限制本身上升為新觀念的基礎。他多次強調,即使古典物理學的語言是不精確的、有局限性的,我們仍然不得不使用這種語言,因為我們沒有別的語言。對科學理論的理解,意味著在客觀地有規律地發生的事情上,取得一致看法。而觀測和交流的全過程,是要用古典物理學來表達的?!?〕
量子力學的反對者愛因斯坦同樣清楚這里的語言問題。他把玻爾等人盡力把量子力學與實驗語言溝通起來所作的種種附加解釋稱之為“綏靖哲學”(Beruhigunsphilosophie)〔3〕或“文學”〔4〕,這實際上指明了互補原理等觀念是在與時空經驗相關的科學語言之外的。愛因斯坦拒絕承認量子力學是關于實在的完備描述,所以并不以為這些附加解釋會在將來成為科學語言的新的有機內容。薛定諤和玻姆等人從另一個角度作出的考慮,反映了他們以為玻爾、海森堡、泡利和玻恩等人的觀點回避了經典語言與實在之間的深刻矛盾,而囿于語言限制并為之作種種辯解。薛定諤說:“我只希望了解在原子內部發生了什么事情。我確實不介意您(指玻爾)選用什么語言去描述它。”〔5〕薛定諤認為,為了賦予波函數一種實在的解釋,一種全新的語言是可以考慮的。他建議將N個粒子組成的體系的波函數解釋為3N維空間中的波群,而所謂“粒子”則是干涉波的共振現象,從而徹底拋棄“粒子”的概念,使量子力學方程描述的對象具有連續的、確定的時空狀態。
固然,幾率波的解釋使得理論的數學結構不能對應于實在的時空結構,如果讓幾率成為實驗觀察中首要的東西,就會讓客觀實在在描述中成了一種“隱喻”。然而薛定諤的解釋由于與三維空間中的經驗沒有明顯的聯系,也成了另一種隱喻,仍然無法作為一種科學語言而獲得充分的意義。
玻姆的隱序觀念與薛定諤的解釋在語言問題上是相似的。他所說的“機械序”〔6〕其實就是以笛卡爾坐標為代表的關于廣延性空間的描述。這種描述由于經典物理學的某些限定而表現出明顯的局限性。玻姆認為量子力學并未對這種序作出真正的挑戰,在一定程度上指出了量子力學的保守性。他企圖建立一種“隱序物理學”,將量子解釋為多維實在的投影。他以全息攝影和其它一些思想實驗為比喻,試圖將客觀實在的物質形態、時空屬性和運動形式作全新的構造。但由于其基礎的薄弱,仍然只是導致了另一種脫離經驗的描述,也就是一種形而上學。
這里所說的“基礎”指的是,一種全新的語言涉及主客體間完全不同的相互介定。它涉及對客體的完全不同的剝離方式,也就是說,現行科學語言及其相關思維方式的整個基礎都將改變。然而,現實地說,這不是某一具有特定對象和方法的學科所能為的。
可見,試圖通過一種全新的語言來解決量子力學的語言問題是行不通的。這個問題比通常所能想象的要無可奈何得多。
五、量子力學何種程度上是“革命性”的
量子力學固然在解決微觀客體的問題方面,是迄今最成功的理論,然而這種應用上的重要性使人們有時相信,它在觀念上的革命也是成功的。其實,上述語言與實在圖景的沖突并未解決。量子力學的種種解釋無法在科學語言的基礎上必然過渡到那種非因果、非決定論觀念所暗示的宇宙圖景。這就使我們有必要對量子力學“革命性”的程度作審慎的認識。
正統的量子力學學者們都意識到應該通過發展思維的豐富性來解決面臨的困難。他們作出的重要努力的一個方面是提出了很多與經典物理學不同的新觀念,并希望這些新觀念能逐漸溶入人類的思想和語言。其中玻恩用大量的論述建議幾率的觀念應該取代嚴格因果律的概念?!?〕測不準原理以及其中的廣義坐標、廣義動量都是為粒子而設想的,卻又不能描述粒子在時空中的行為,薛定諤認為應該放棄受限制的舊概念,而玻爾卻認為不能放棄,可以用互補原理來解決。玻爾還希望,波函數這樣的“新的不變量”將逐漸被人的直覺所把握,從而進入一般知識的范圍?!?〕這相當于說,希望產生新的語言基元。
另一方面,海森堡等人提出,問題應該通過放棄“時空的客觀過程”這種思想來解決。〔9〕這又引起了量子力學的客觀性問題。
這些努力在很大程度上是具有保守性的。
我們試把量子力學與相對論作比較。相對論的革命性主要表現在,通過對時間和空間的相對性的分析,建立起時間、空間和運動的協變關系,從而了絕對時空、絕對同時性等舊觀念,并代之以新的時空觀。重要的是,在這里,絕對時空和絕對同時性是從理論上作為邏輯必然而排除掉的。四維時空不變量對三維空間和一維時間的性質依賴于觀察者的情形作了簡潔的概括,既不引起客觀性危機,又與人類的時空經驗有著直接關聯。相對論排除了物理學內部由于歷史和偶然因素形成的一些含混概念,并給出了更加準確明晰的時空圖景。它因此而在科學語言的范圍內進入了一般知識。
量子力學的情況則不同。它的保守性主要表現在:
第一,嚴格因果律并不是從理論的內部結構中邏輯地排除的。只是為了保護幾率波解釋,才不得不放棄嚴格因果律,這只是一種人為地避免邏輯矛盾的處理。
第二,不完全連續性、非完全決定論等觀念并沒有構成與人類的時空經驗相關聯的自洽的實在圖景。互補原理和并協原理并沒有從理論內部挽救出獨立存在于時空的客體的概念,又沒有證明這種概念是不必要的(如相對論之于“以太”那樣)。因此,量子力學的有關哲學解釋看似拋棄舊觀念,建立新觀念,實際上,卻由于這些從理論結構上說是附加的解釋超出了關于實在的描述,因而破壞了以實在的自明性為保證的描述的前提。所以它實際上對觀念的豐富和發展所作的貢獻是有限的。
第三,量子力學內在地不能過渡到關于個別客體的時空形式及過程的模型,使得它的反對者指責說這意味著位置和動量這樣的兩個性質不能同時是實在的。而為了保護客觀性,它的支持者說,粒子圖像和波動圖象并不表示客體的變化,而是表示關于對象的統計知識的變化?!?0〕這在關于實在的時空形式及過程的科學語言中,多少有不可知論的味道。
第四,人們必須習慣地設想一種新的“實在”觀念以便把充滿矛盾的經驗現象統一起來。在對客體的時空形式作抽象時,這種方法是有效的。而由于波函數對應的不是個別客體的行為,所以大多新的“實在”幾乎都是形而上學的構想。薛定諤和玻姆的多維實在、玻姆在闡釋哥本哈根學派觀點時提出的那種包含了無限潛在可能性的“第三客體”〔11〕,都屬于這種構想。玻恩也曾表示,量子力學描述的是同一實在的排斥而又互補的多個影像?!?2〕這有點象是在物理學語言中談論“混元”或“太極”一樣,很難說對觀念有積極的建設。
本文從科學語言的角度,對量子力學尤其是它的哲學基礎的保守性作出一些分析,這并不是在相對論和量子力學之間作價值上的優劣判斷。也許量子力學的真正價值恰恰在于它所碰到的困難是根本性的。
海森堡等人與新康德主義哲學家G·赫爾曼進行討論時,赫爾曼提出,在科學賴以發生的文化中,“客體”一詞之所以有意義,正在于它被實質、因果律等范疇所規定,放棄這些范疇和它們的決定作用,就是在總體上不承認經驗的可能性?!?3〕我們應該注意到,赫爾曼所使用的“經驗”一詞,實際上是人類對客觀事物的廣延性和分立性的經驗。這種經驗是科學的實在圖景成立的基礎或真實性的保證,邏輯是它的抽象和提升。
在本文的前三節已經談到,自從古希臘人力圖把日常語言理想化而創立了邏輯語言以來,西方的科學語言就一直是在實在的廣延性和分立性的介定下發展起來的。我們也許可以就此推測,對于人的認識而言,世界是廣延優勢的,但如果因此認為實在僅限于廣延性方面,卻是缺乏理由的。廣延性優勢在語言上的表現之一是幾何優勢。西方傳統中的代數學思想是代數幾何化,即借助空間想象來理解數的。不論畢達哥拉斯定理還是笛卡爾坐標都一樣。直角三角形的斜邊是直觀的,而根號2不是。我們可以用前者表明后者,而不能反過來??墒且粋€離散的數量本身究竟是什么呢?它是否與實在的另一方面或另一部分(非廣延的)相應?也許在微觀領域里不再是廣延優勢而量子力學的困難與此有關?
如果量子力學面臨的是實在的無限可能性向語言的有限性的挑戰,那么問題的解決就不單單是語言問題,甚至不單單是目前形態的物理學的問題。它將涉及整個認識活動的基礎。玻爾似乎是深刻地意識到這一點的。他說“要做比這些更多的事情完全是在我們目前的手段之外?!薄?4〕他還有一句格言;“同一個正確的陳述相對立的必是一個錯誤的陳述;但是同一個深奧的真理相對立的則可能是另一個深奧的真理?!薄?5〕
參考文獻和注釋
〔1〕〔3〕〔4〕《愛因斯坦文集》第一卷,商務印書館,1994,第137、241、304頁。
〔2〕〔5〕〔9〕〔13〕〔14〕〔15〕海森堡:《原子物理學的發展和社會》,中國社會科學出版社,1985,第141、84、82、131、47、112頁。
〔6〕玻姆:《卷入——展出的宇宙和意識》,載于羅嘉昌、鄭家棟主編:《場與有——中外哲學的比較與融通(一)》,東方出版社,1994年。
〔7〕玻恩:《關于因果和機遇的自然哲學》,商務印書館,1964年。