時間:2023-08-24 09:28:19
序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇人工智能教育趨勢范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!
一、高職教育現狀
(一)客觀層面
(1)社會面。當前社會發展處于轉型關鍵期,高職教育迎來全新發展機遇,對人才培養質量不斷提高。傳統思想中,家長學生都帶著有色眼鏡看待高職教育。隨著社會給技術技能型人才提供很多高薪崗位,部分學生主動選擇高職院校進修學業,提高自身技能水平。高職院校必須以社會發展趨勢為導向,及時調整自身發展戰略。(2)政策面。在新課程改革視域下,政府高度重視高職教育的發展,出臺了多項扶持政策,如《國家職業教育改革實施方案》《職業學校專業頂崗實習標準》《關于推進高等職業教育改革創新引領職業教育科學發展的若干意見》等,極大的推動了高職教育的穩定發展。
(二)主觀層面
(1)教學理念。高職教師受傳統思想影響,往往重視成績和理論知識,亟需引進新的教學理念,并落實在實際教學中。高職院校已經意識到人工智能時代,自身轉型創新的必要性,正積極將全新的教學理念貫穿在人才培養過程中。(2)教學方式。高職教育逐漸創新教學方式,將頂崗實習、校企合作、實訓教學等應用在常規教學中,適應時展,彰顯職教特色。但在實際教學中,教師理念未發生變化,能力無法滿足新型教學方式需求,存在亟需改進優化的地方。(3)教學體系。只有完善的教學體系,才能為高職教育的改革創新提供依據參考。當前高職教育體系中含有諸多不足,如學科單一、理論與實踐比重不協調、知識內容陳舊等。高職教育要想適應新時展趨勢,應積極完善教學體系。
二、人工智能現狀
(1)國家戰略。近年來,國家高度重視人工智能發展,國務院《關于印發新一代人工智能發展規劃的通知》(國發〔2017〕35號),提出科技創新的主要方向是人工智能,提倡積極構建全新的人工智能科技創新協同機制,進一步完善人工智能教育體系,實現人才儲備和梯隊建設的目標,推動智能經濟的發展。各部委也積極頒布一系列政策,如《智能制造2025》《“互聯網+”人工智能三年行動實施方案》《機器人產業發展規劃(2016-2020)》等[2]。可見,國家為人工智能技術的發展提供了充足動力,人工智能已成為國家戰略的一部分。(2)產業發展。多年的探索,人工智能技術有了明顯提升,在問題求解、泛邏輯理論、不確定推理、拓撲學、圖像處理、模式識別、專家系統等方面有了顯著研究成果,一部分成果甚至領先世界水平。例如我國在模式識別領域的研究,文字識別、語言識別、虹膜識別都取得優異成果,被廣泛應用在生物醫藥、機器人視覺研究、衛星遙感、自主導航、軍事等領域。企業十分關注人工智能技術的發展應用,像360人工智能研究院、阿里人工智能研究院、百度人工智能研究院等。人工智能技術的深度研究,使應用和商業價值最大化。據不完全統計,2017年人工智能產業創造700億元市場價值,預計在2020年產業規模超過1600億元。
三、人工智能推動新時代高職教育轉型發展的必要性
(一)技術技能型人才的需求
高職教育發展的目的是培養適合崗位需求的技術技能型人才。人工智能時代,先進技術的廣泛應用,大部分崗位對人才的需求發生明顯變化,逐漸形成了“機器換人”的局面。企業中簡單、重復、勞動強度大的崗位,都由智能機器人予以代替。例如在京東電商的物流中,出現無人機配送方式,直接沖擊了傳統人工物流配送模式。相信在不久的將來,會有更多的智能機器人走向物流配送的工作崗位,形成全新的工作體系。此外,在生產制造的質檢環節,由于傳統人工監測方式存在諸多不足,應用人工智能的圖像識別技術,可以實現對產品質量的動態檢測。可見,人工智能時代會有大批崗位“消失”,取而代之的是智能化機器人。高職教育必須轉變以往的教育模式,順應時展趨勢,結合社會崗位對技能人才的需求,調整高職教育方向,實現高職教育價值。
(二)國家發展戰略的要求
以往的發展致力于“中國制造”,但新時代“中國制造”已無法提升綜合國力,國家必須調整發展戰略。人工智能時代將“中國制造”轉變為“中國創造”“中國智造”。這一發展戰略的轉變,能看出先進科學技術在國家發展中的重要地位。為了2025年實現“中國智造”的目標,高職院校創新人才培養模式,順應國家發展戰略的調整。同時,高職教育轉型過程中,轉變以往以理論、成績為主的思想觀念,對人才進行更加系統的培養,調整理論知識、實習實踐之間的關系比例。人工智能時代的高職教育轉變與創新,可以加大對學生創新意識的培養力度,使人才綜合素養得到更好提升,滿足“中國創造”的需求。
(三)學生自身價值實現的需求
教育是著眼于未來的事業,教育的首要任務就是為未來社會培養相適應的合格人才。隨著人工智能的誕生和發展,我國已經開始將人工智能應用于教育領域,并顯示出人工智能對于彌補當前教育存在的種種缺陷和不足,推動教學現代化和教育發展改革進程起著越來越重要的作用。在現代醫學發展中,工程科學與臨床醫學不斷融合,相互進步。近幾年,隨著人工智能技術,機器人技術,虛擬與增強現實技術,3D打印技術與醫學不斷的融合發展,衍生出一系列的醫學診療技術,儀器,大大推進了醫學發展。從2013年到2017年,國務院、發改委、FAD連續發文,多次提及醫療走智能化、云化的趨勢,為推動智能醫療領域保駕護航。智能與醫學的結合已經是大勢所趨,因此,為培養大量智能醫學人才極有必要對智能醫學教育新模式進行深入研究。
一、目前醫學教育以及醫學人才培養狀況
智能醫學工程是一門將人工智能、傳感技術等高科技手段綜合運用于醫學領域的新興交叉學科,研究內容包括智能藥物研發、醫療機器人、智能診療、智能影像識別、智能健康數據管理等。
智能醫學工程的畢業生掌握了基礎醫學、臨床醫學的基礎理論,對智慧醫院、區域醫療中心、家庭自助健康監護三級網絡中的醫學現象、醫學問題和醫療模式有較深入的理解,能熟練地將電子技術、計算機技術、網絡技術、人工智能技術,應用于醫療信息大數據的智能采集、智能分析、智能診療、臨床實踐等各個環節。實驗教學正是融合型創新人才的最好培養方式。智能醫學人才的培養需要各學科間的相互交融更為緊密,學生的創新應用能力才能得到更好的培養。與此同時,由于絕大部分醫工結合的專業大部分歸屬與工科學院下,缺乏必要的臨床經驗,因而學生不能很好的把握新技術的應用。
而國內相關人才缺口還非常大,目前,國內僅僅有生物醫學工程、醫學信息工程等工科專業培養醫工結合人才。但是囿于培養時間與培養模式,他們往往只能針對具體某一方向,并且目前的培養體系還多著重于工學技術的研究,缺乏臨床實踐。
二、智能+醫學教育的必要性探究
2.1技術進步對醫療人員的診療幫助
以癌癥的治療為例,由于針對癌癥藥物的研究何藥物數量非常巨大,對于普通醫生在短時間內難以進行準確的判斷針對癌癥的研究和藥物數量非常巨大,具體來說,目前已有800多種藥物和疫苗用于治療癌癥。但是,這對于醫生來說卻有負面的影響,因為有太多種選擇可供選擇,使得為病人選擇合適的抗癌藥物變的更加困難。同樣,精確醫學的進步也是非常困難的,因為基因規模的知識和推理成為決定癌癥和其他復雜疾病的最終瓶頸。今天,許多受過專業訓練的醫學研究員需要數小時的時間來檢查一個病人的基因組數據并作出治療決定。
上述問題在擁有工學、醫學雙背景的醫生手中已經不是問題,通過目前日漸成熟的AI技術,對于大量的醫療數據進行檢索,通過可靠的編程手段,通過人工智能技術,建立完備的醫療數據庫,幫助醫生進行診療。據調查,美國微軟公司已經研制出幫助醫生治療癌癥的人工智能機器,其原理是對于所有關于癌癥的論文進行檢索,并提出對于病人治療最有效的參考方案,它可以通過機器學習來幫助醫生找到最有效,最個性化的癌癥治療方案,同時提供可視化的研究數據。
2.2智能醫學對于新時代醫生培養的影響
人工智能通過計算機可為學生提供圖文并茂的豐富信息和數據,一方面加強了學生的感性認識,加強了對所學知識的理解和掌握,從而提高了教學質量。同時,人工智能可幫助教師完成繁雜的、需適應各種教學的教學課程、課件等設計,使教師將更多的精力專注于學與教的行為和過程,從而提高教學效率。正如前面所述例子,智能網絡模塊化學習平臺可使教學擺脫以往對于示教病例的依賴,拓展了學生們的學習空間和時間,可極大地提高醫學學習效率和教學質量。
教育與人工智能相結合將會創新教育方式和理念。北京師范大學何克抗教授在《當代教育技術的研究內容與發展趨勢》中提到當代教育技術的五大發展趨勢之一就是“愈來愈重視人工智能在教育中應用的研究”。結合上述人工結合上述人工智能在醫學教育中的創新作用,下面就人工智能結合醫學學教育新模式提出一些構想。
三、交叉醫學人才的培養
3.1建立智能醫學人才培養體系的必要性
目前智能醫學的研發和臨床還存在隔閡,臨床醫生并沒有很好地理解人工智能,無法從實踐出發提出人工智能能夠解決的方向,而人工智能的產業界熱情高漲,卻未必能踩準點,所以產業界需要和臨床深度溝通融合,才能真正解決看病難、看病貴的問題,緩解醫療資源緊張。目前,國內僅僅有生物醫學工程、醫學信息工程等工科專業培養醫工結合人才。
3.2醫學人才培養體系初步構想
一、引言
第四次工業革命的到來,人工智能作為一項主要的技術,必將鞭策整個人類社會的轉型。很多國家制訂了戰略規劃,在2017年我國也了《新一代人工智能發展規劃》和《新一代人工智能產業三年行動計劃(2018-2020)》,人工智能產業已上升為國家戰略。近年來,在人工智能涉及的領域中,藝術與技術結合,升華到與人工智能的結合且越來越受到重視。阿里智能AI“魯班”已經掌握了上百萬個設計師的創意內容,雙11期間制作1.7億張海報,沒有一張是重復的,而這些工作如果人工制作的話需要100個設計師工作300年;央視節目中“魯班”PK資深設計師取勝等等這些新聞,無不極大地震撼了整個設計行業。設計師會失業嗎?高校的設計教育面對AI的挑戰與機遇如何制定培養目標?如何在新的競爭中占領先機?未來已來,智能藝術設計的路在何方?
二、設計行業面對四大挑戰
(一)驚人的數字
馬云在一次報告中說未來30年人類只工作4個小時,大量的工作崗位會被人工智能搶走;根據白宮的人工智能報告預測,在未來10-20年間,人工智能技術有可能取代47%現有工作。麥肯錫的預測是49%,盛產勞動力的中國和印度的影響最大。Siri之父、人工智能專家溫那(Winarsky)的預測是70%的工作將被取代。不得不說,AI是人類智慧的結晶,正在高速顛覆著人們的生活。
(二)AI設計發展趨勢
AI最容易取代的是簡單設計:如LOGO、UI界面、海報招貼、網站網頁、產品造型、室內家裝、產品包裝……原本這種理想的設計工作不再能提供人生的庇護所,但凡是明確、簡單、重復標準、規則的美術設計與制作工作,未來都容易被取代,傳統設計行業將會萎縮乃至可能逐漸消失。
(三)設計環境惡劣
設計創意無法保護,設計法規沒有限定,設計競價無序,商家廠家缺乏契約精神,設計知識產權無法保護契約,新設計新技術缺乏情趣,設計同質化嚴重……(四)設計教育落后現有設計模式傳統、設計教育落后,設計知識體系缺乏更新、進化,知識性重復訓練、模仿性傳統方法制約了學生創造性情感思維的發展,設計師終身教育觀念的缺失阻礙了設計師的可持續發展,設計知識與設計人才近親繁殖、代際傳遞的情況嚴重。
三、AIDesign發展迅猛
目前傳統藝術設計已經發生智變,使設計更美更快更簡單。人工智能藝術與設計已經一定高水平,如果設計師仍停留在傳統設計水平,就會受到來自機器的“威脅”。但也不全會,除了“創意”部分讓機器無可奈何,人類設計師與機器的競合中,我們要轉變方向注重數字移動媒體策劃與設計、移動媒體用戶需求挖掘、數字移動媒體需求文檔的撰寫、數字移動媒體優化、數字移動媒體UI界面設計、H5設計、App設計、UE用戶體驗設計、虛擬移動媒體設計、信息交互設計等媒體智能設計新技術。高品質藝術、設計依賴于混合增強智能技術。AdobeMax“SneakPeeks”將迎來Adobe全家桶的諸多全新功能,如圖片變視頻、靜態變動態、一鍵設計字體、視頻扣剪、紙盒自動生成、AR呈現、AE一鍵去馬、Ru跨平臺制作(剪輯、混音、調色)、跨平臺同步改稿、人工智能排版等十大看似很科幻但已經實現了的AI功能。華為Mate20手機3D掃描防生建模與成像,以及AI手勢動作捕捉的體感游戲功能,更為我們提供了解放設計生產力的前景。同時MIT研發的工業產品AI設計系統即將面世。主要產品體現如下:
(一)AIVD人工智能視覺設計
AI集成化的成熟產品,比如Adobe系列的產品,軟件低層融入AI技術,更好更快地創作文字和圖像、影音等元素。如AdobeSensei:人工智能做設計的底層技術,集成在Adobe系列軟件中,有字體匹配方案、自動配色方案、基于線稿自動上色、自動校正手繪圖形等。
(二)AIPD人工智能產品設計
Adobe人工智能鞋包設計、IBMWatson智能設計服裝、Autodesk智能設計汽車等。
(三)AISD人工智能空間設計
Prisma智能風格化設計、Autodesk建筑智能生成設計、ZahaHadid參數化設計等產品。
四、設計人工智能教育的發展動向
未來,人工智能教育會加速發展,老師不會被AI取代,但不用AI的老師一定會被取代;未來,老師不是簡單地傳授知識,而是通過言傳身教的溝通交流,對學生進行激勵、鼓舞,成為人類靈魂的設計師;未來,AI將實現規?;蛡€性化間的平衡,帶來了一種學生易學、教師易教的解決方案;未來,老師作為教學過程中始終核心地位,推陳出新積極善于運用AI技術進一步提高師生教與學的體驗和教學效率。當務之急,要讓更多的老師正視人工智能的快速發展,通過學習AI技術了解人工智能的發展情況,從而改變老師的教育教學觀念和教學方法,引領高品質教育的未來。在未來教育中,教師的角色有三種觀念:1.取代說,2.不可取代說,3.人機協同說大多數觀點是:未來,教師將與人工智能協同共存。未來知識傳授功能會逐步被人工智能取代,而人類教師則應偏重于培養學生的核心素養。正如雷克利福德所言,“科技不能取代教師,但是使用科技的教師卻能取代不使用科技的教師”。如今,拋開先天財富的不同,人與人之間的差距主要來自學習能力的不同。這種差異會加劇不平等,在未來,這種趨勢將會進一步加強。應對人工智能時代,教師除更新教育教學觀念、轉變角色、改革教學模式和方法外,必須堅持終身學習,教師的終身學習,不僅要學習Python之類的AI編程技術,更需要增強對,限于時間和精力有限,分別將有關AI知識技能分為三類,以適應設計人工智能的技術更迭和“一專多能”。
中圖分類號:TP18
“人工智能”一詞最早是在20世紀50年代末期在Dartmouth學會上提出的。它是計算機技術的一個分支學科,但又同時包含了很多領域的不同學科,例如生物信息學、機械理論學、數理推論、語言文化等,它的研究領域非常的廣泛,包括機器翻譯研究、智能控制研究、專家系統學、機器人研究、語言和圖像理解研究、遺傳編程研究、自動程序設計研究、航天科學與應用、龐大的信息處理、儲存、管理研究。此后,越來越多的科研人員開始了對人工智能技術的研究。國際上比較先進的研究機構有麻省理工學院、斯坦福大學、加州大學伯克利分校、賓夕法尼亞大學、耶魯大學、德國人工智能研究中心、索尼公司等,中國的先進研究機構主要有清華大學、北京紫光優藍機器人技術有限公司、中國科學院先進技術研究院、北京大學、南京理工大學、哈爾濱工業大學、中國科學技術大學、北京郵電大學等幾十家機構。
目前,將人工智能應用在網絡教育中是很多研究者關注的熱點,在近些年的研究中取得了很大的進步,取得了一些先進的成果,但是在研究中也遇到了一些問題,需要研究人員進行解決并創新。本文首先介紹了網絡教育的現狀,探討了人工智能在網絡教育中的應用,通過研究提出了做好人工智能在網絡教育中應用的有效措施,最后對人工智能在網絡教育中的發展前景進行展望。
1 網絡教育的現狀
隨著信息技術和網絡技術的不斷發展,人們對教育的觀念以及接受教育的方式發生了巨大的改變,“網絡教育文化”日趨成熟。網絡的發展給傳統的教育模式帶來新的挑戰,它除了將傳統教育模式的一些顯著不足進行了改變以外,同時使教學更富有吸引力和生氣,吸引更多的人愿意到Internet教學中來學習自己想要的知識,他們可以不受時間、空間、身份的限制,到這個虛擬的課堂來進行“充電”。但在當前,網絡教育還在初級的發展階段,在實際的推廣和應用中還存在著一些問題:
(1)在網絡遠程教育的過程中,支持學習的服務系統沒有很好的滿足學習者的要求,引導學習者學習的手段和給學習者答疑的方法都比較落后,服務的方式受到一些客觀因素的限制;
(2)網絡實驗教學中有很的問題存在,例如空間的分散性差,時間的流動性和自主性差,除此之外,便攜性也比較差等;
(3)目前,雖然網絡教育中進行的考試具有開放性,但是考試的公平公正性、考試類型的科學性、出題的權威性都很難保證;
(4)目前來看,網絡系統本身具有了信息查詢能力,但這種查詢的能力是很有限的。
2 人工智能在網絡教育中的應用
2.1 智能決策支持系統
智能決策支持系統是在1980年左右由美國的研究大師波恩切克提出來的,是決策支持系統與人工智能技術相結合的產物。目前,由于智能決策支持系統的不斷發展和創新,在網絡教育的應用和研究方面表現出很強的發展潛力。例如,智能決策支持系統在數字和移動圖書館中的得到了廣泛的應用,該系統能夠為數字圖書館的管理人員提供決策和管理所需的數據、信息,幫助他們明確決策和管理的目標,通過建立決策模型并加以修改或完善,為數字圖書館正確、有效的管理和決策提供必要的支持。
2.2 智能教學系統
智能教學系統是在1970年以后迅速發展起來的,可以為學習者提供一種智能的授課環境,它將計算機的模擬功能來體現在整個教學過程中,使用人工智能技術和多媒體技術等先進的教學手段,共同形成一個交互式的開放的教學系統,在這個學習系統中,學生可以主動的獲取學習知識,系統可以根據學習者的個人情況來進行合理和科學的教學,以達到最佳的、理想的教學效果。
2.3 智能導學系統
支持服務是現代計算機網絡教育系統的重要構成要素。建立和維持一個高效靈活、強有力的支持服務子系統是有效地開發、管理和實施計算機網絡教育項目的保證。智能導學系統可以創造一個優良的學習環境,使學習者方便快捷地調用各種資源,以獲得學習的成功。
2.4 智能硬件網絡
智能網是20世紀80年代初期興起的研究課題。隨著網絡的日益普及,通過網絡進行學習,不僅要求多媒體綜合化的信息處理能力,而且要求網絡能夠提供高級信息處理能力。就目前的狀況而言,對現有的計算機教育網絡賦予其一定的“智能”,從硬件性能本身加以提升是一種不乏遠見的選擇。
3 做好人工智能在網絡教育中應用的有效措施
3.1 加大資金的支持
對于做好人工智能在網絡教育中的應用工作,絕對離不開資金的支持,因此各級政府部門應該做好相關的預算,落實好國家對于支持人工智能技術的相關政策,對于在人工智能技術發展中做出突出貢獻的企業和科研單位要給予一定的資金支持,支持這些企業、科研單位的研究工作,促進人工智能在網絡教育中更好的發展和應用。
3.2 加快人員培訓工作,建立技術研究團隊
人工智能在網絡教育中的應用工作具有技術性、專業性強等很多特征,因此,必須培養一批高素質的人工智能專業人才,同時還要對這些人員進行全面的業務培訓,使得這些人員既要懂管理,又要精通人工智能的專業知識,通過全面的業務培訓和人才引進,建立人工智能的技術研究團隊,使得這些人的才能得到很好的發揮,在人工智能方面有所創新,保證人工智能在網絡教育中得到更好的應用。
3.3 加強和先進研究機構的合作
在人工智能技術研究方面,美國、英國、德國等國家都走在世界的前列,而我國的人工智能技術研究的能力較低,與上述發達國家相比還存在一定的差距。因此,如何縮小這種差距,實現人工智能在網絡教育中更好的應用,就需要我們的研究人員加強專業知識的學習,和這些國家的先進研究機構進行有效的溝通和聯系,借鑒其先進的研究經驗,根據自己的實際需要,進行一些實際的合作。
4 結束語
由于人工智能技術本身存在著巨大的優勢,人工智能網絡技術也會不斷地進行發展而趨于成熟,這將極大地改善并且優化網絡教育的學習環境,全面提升網絡教育的整體教學質量,并有望增強網絡教育的全面開放性。為了做好人工智能在網絡教育中的應用,需要加大資金的支持,加快人員培訓工作,建立技術研究團隊,加強和先進研究機構的合作,使網絡學習的支持服務更加人性化和擬人化,更加體現以人為本的關懷精神。
參考文獻:
[1]呂生榮.淺談人工智能在計算機輔助教學中的應用[J].科技資訊,2009(01):198.
[2]張園.人工智能技術在計算機輔助教學中的應用研究[J].科技資訊,2007(34):108-109.
[3]陸志一,吳學慶.計算機未來的發展趨勢[J].黑龍江科技信息,2008(04).
[4]張瑞.計算機科學與技術的發展趨勢探析[J].制造業自動化,2010(08).
0引言
正如會計電算化替代傳統手工會計一樣,隨著信息化、智能化、互聯網、大數據等科技元素在會計信息化中的應用,人工智能悄然到來。自2017年“會計證被取消”,到普華永道、安永、德勤等國際會計師事務所紛紛推出財務機器人,這些舉動在財務圈引起了軒然大波,許多中職學校會計相關專業的學生,擔心基礎核算會計將被人工智能取代,對未來頗感擔憂。根據世界經濟論壇2016年的調研數據預測,到2020年,在全球15個主要的工業化國家中,機器人與人工智能的崛起,將導致510萬個就業崗位的流失,未來20年最有可能被機器人搶走飯碗的崗位包括低端制造業的生產、會計等[1]。2017年7月,中國《新一代人工智能發展規劃》,將人工智能上升為國家戰略。所以筆者認為,基于人工智能背景下的中職會計電算化專業人才培養方式將面臨變革,在教學中應站在未來發展的高度,適應信息化發展,及時掌握人工智能相關技術,實現由傳統會計電算化專業人才培養向智能化管理會計轉型。
1人工智能的概念[2]
人工智能即AI。它是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術以及應用系統的一門新的技術科學,它是指由人工制造出來的系統表現出來的智能。目前人工智能在計算機科學領域內,受到了廣泛的發揮。在機器人、經濟政治決策、控制系統、仿真系統中得到應用。人工智能是信息技術發展的必然,它已悄悄地改變著人類的各行各業。人工智能在會計行業中應用,促使會計由簡單核算向管理方向變革,推動了會計行業的發展,同時也促使著中職學校會計及相關專業的人才培養轉變。人工智能取代傳統的會計電算化操作人員是一種趨勢,但也是一種轉變,自我提升的機遇。
2中職學校傳統會計電算化專業人才培養[3]
2.1課程偏傳統基礎核算類,輕參與、管理類會計課程
在多數中職學校會計電算化教學計劃課程設計中,傳統財務會計類課程占大多數,管理會計類課程設置單一或者沒有。而財務機器人的出現,則能夠替代大部分重復性、流程性基礎會計核算工作。
2.2會計實操偏基礎性會計技能,輕數據分析、挖掘
在實踐教學及技能培養中,過于注重培養學生點鈔、傳票的翻打、會計書寫、憑證裝訂,會計電算化軟件操作機械性錄入等。在當前大數據、人工智能背景下,可以讓會計人員擺脫繁雜事務,重點放在會計數據分析與數據挖掘,為企業決策提供服務。
2.3課程偏模擬操作,輕實際操作
無論是手工核算還是會計電算化記賬,大多數實操是模擬一個企業一個月的業務,學生根據教材或老師給予的信息進行會計處理,過賬,做報表。一學期就是這樣反反復復練習。學期結束,雖然考試合格,但仍有很多學生不明白為什么這么處理,特別在月末業務處理更加模糊不清,例如工資發放,計提稅費、費用攤銷、成本及費用結轉等。還有絕大多數學生不知道真實環境如何計稅、報稅、納稅,只是理想中的學習,為了做賬而做賬。
3人工智能背景下的中職會計電算化人才培養[4]
3.1由基礎核算型初級人才向有思想的中級人才轉變
人工智能在會計行業中的應用,會計核算軟件中的基礎數據錄入、憑證錄入與審核、記賬、編制科目匯總表、材料的收發統計、報表的編制等操作很容易被財務機器人替代,但是也有一些是機器無可替代的,需要有思想的“人”來處理。例如:由于大環境變化,企業的固定資產有明顯減值趨勢,而財務機器人并不能分析與判斷這個固定資產是否會減值或減值多少,如果財務上不及時做出處理,將可能導致企業少確認資產減值損失,虛增了企業的資產和利潤,對于企業來說,這屬于信息失真。在大數據時代,中級類型的會計人才儲備相對較少,中職學校的會計電算化教育,需要培養的應當是此類會計人才。教學會學生不能只拘泥于看財務數據,還要學會合理利用有效的會計數據服務于企業的發展,提高企業的核心競爭力。
3.2由傳統的財務會計向人工智能環境下的管理會計人才轉變
財務機器人的出現,替代了傳統的財會人員進行基礎數據的錄入,日常憑證的填制、審核、記賬;憑證、賬簿、報表的生成;成本結轉、折舊等財務處理;納稅申報等,這不僅提高了會計工作的效率,減少了傳統的會計人員繁雜的日常賬務處理工作,但同時也讓傳統的會計人員失去工作。作為會計的教育者,如何讓學生在未來立于不敗之地,不被財務機器人替代,就需要學校適應時代趨勢,教學重點由傳統的基礎核算向智能管理型會計演變。會計從事的活動,除了重復、機械、煩瑣的事情外,還可以創造更多價值,比如:評估、判斷、溝通、協作、建議等。管理型計人才就是通過智能機器人核算出的精確信息,對企業的未來做出評估、預判、建議等,甚至幫助企業管理者做出決策。
3.3由會計電算化軟件操作員向人工智能會計系統的設計者轉變
人工智能環境下的財務機器人,實質就是一種自動化運行的程序,這種程序的設計,需要設計人員既要懂計算機又要懂會計。而現在的中職學校,會計電算化專業主要培養的是會計專業人才,操作會計核算軟件,而很少在計算機方面進行教學。在人工智能環境下,懂得會計專業的人才只是人工智能會計系統設計的主導者,而計算機方面人才則根據會計法及相關規則進行系統設計,自動化處理會計業務需要想到協作,融會貫通。人工智能永遠是基于系統的規則和大數據,如果規則發生變化,人工智能將無法起作用。在日常教學中,哪怕我們不能完全讓學生掌握編寫程序,但是應當教會學生看懂和讀懂程序,對機器人“思想”進行修改,也算是人工智能的掌控者,而不是被替代者。
4人工智能背景下中職學校會計電算化專業人才培養應對策略[5]
4.1更新理念與改變教學計劃
筆者認為,在人工智能背景下,在中職學校,會計及電算化專業辦學理念中應加入人工智能等相關技術,同時其人才培養方案、專業建設、教學計劃等方面都需要做出相應的調整,培養適應于人工智能時代復合型人才。例如,中職學校會計或會計電算化專業的教學計劃中,計算機方面課程開設僅有計算機應用及會計電算化軟件操作課程,數據處理、編程類或人工智能課程幾乎沒有,這樣的教學安排不利于學生對未來人工智能的應對能力培養,應當增加相應的計算機方面課程,財務管理、會計政策、法律法規等人工智能無法替代的課程,減少將來可能被財務機器人替代的會計技能課程。
4.2提高教師人工智能等相關理念和技術
要給學生一碗水,教師必須要有一桶水,雖然人工智能的出現解決了許多教育上的難題,但是教師在人工智能背景下還需要增強自身信息化能力,學習人工智能相關理念,掌握人工智能相關技術。這就需要學校給予老師多點人文關心以及人工智能方面的繼續教育。
4.3關注人文綜合素質培養,讓人工智能為我所用
財務機器人出現,會計人員有更多時間去從事財務機器人無可替代更具有情感類的工作,這些工作需要人與人之間的溝通與交流,因此,筆者認為,中職會計電算化專業教育,不僅需要培養學生人工智能動手能力,還要關注學生思想道德、人文綜合素質的培養,提升學生的思想道德水平,教會學生愛崗敬業,誠實守信、樂于助人,激發學生的學習主動性和創造性。如果沒有良好職業道德水平,即使掌握了人工智能技術,也將會破壞規則,讓會計信息失真。我們不能教出人工智能的“奴才”,應當讓人工智能為人類所用,做人工智能的主人。
5結語
總之,人工智能正在快速又深刻地改變我們的生活和工作方式,將人工智能用于會計行業會也將會不斷得到規范。對于人工智能這類新興技術在財務行業的運用初期可能會讓學生產生恐慌、彷徨,認為學校教育無用。作為專業教師,要教會學生變革思想,提高其對會計價值的認識,提高其人文綜合素養,擁有過硬的專業技術,不斷地完善專業勝任能力,把握機會,主動迎接挑戰,那么人工智能就只是會計人員的好幫手,而不是掘墓人。
主要參考文獻
[1]彭維.淺談人工智能時代財務的變革與轉型[J].中國管理信息化,2018(19):39-41.
[2]鞏彥哲.人工智能在會計管理中的應用微探[J].財會學習,2018(20):86-87.
[3]盧映芝,黃靜.人工智能與會計課程實操的結合探討———VR技術的引進[J].現代商貿工業,2018(30):160-162.
(1)為部分優秀的學生將來做更深入的研究打堅實的基礎。在面向知識經濟的今天,研究獲取、表示和使用知識的人工智能學科越來越受到人們的重視。目前人工智能研究被列為中國高技術領域的重點之一。以專家系統為代表的智能化系統在信息技術中也占有重要地位。因此在高等教育中開展人工智能教育和智能化系統的研發,不僅是計算機科學的應用,也是促進各學科服務于國民經濟發展的必然趨勢。為使人工智能的理論、方法和技術的研究與應用普及和深入,教育重心必須要下移,即從研究生教育向本科教育普及。開展本科層次人工智能普及教育的有效途徑之一是在本科高年級開設相關選修課。開展人工智能教育,不僅能夠更好地發揮高等院校的育人和科學研究功能,而且能為學生拓寬專業路徑,擴大自主學習空間和發展個性創造條件,同時也為營造一個使學生不僅有寬厚、扎實的理論基礎,且具綜合分析和解決問題能力的環境。?
(2)為將來從教的學生積聚大量的知識。英國早在1999年,人工智能課程已經作為選修課出現在中學的信息與通訊技術(ICT)課程中。許多中小學還通過機器人競賽活動來激發中小學生學習人工智能的興趣,使學生不僅提高了用信息技術解決問題的能力,而且培養了多種思維方式,獲得了更多的創新空間。美國現行的中學信息技術課程設置中,將人工智能的內容作為“媒體與技術”層面對12年級學生的要求。澳大利亞的部分中學開設的信息處理與技術課程,人工智能、信息系統、算法和程序設計、社會和倫理道德、計算機系統分別作為5個主題共同構成了該課程的教學內容。在該課程的大綱中規定,人工智能部分的教學內容在高中第3學期為12年級的學生開設,教學時間為10周。?
在我國,多年以來中學奧林匹克信息學競賽中一直包含有人工智能相關的題目,涉及啟發式搜索、博弈、智能程序設計等問題。2003年4月,我國教育部正式頒布《普通高中技術課程標準(實驗)》,首次在信息技術科目中設立了“人工智能初步”選修模塊,標志著我國高中人工智能課程的正式起步。?
我國的新課程標準頒布后,教育部評審并通過了分別由教育科學出版社、廣東高教出版社、地圖出版社、上??萍冀逃霭嫔绾驼憬逃霭嫔绯霭娴?套高中《人工智能初步》教材,并開發了相應的教輔材料,包括教師用書和配套光盤等。為了配合中學人工智能課程的實施,國內也推出了一些適合中學生學習與體驗的人工智能軟件和網絡資源。另一方面,一些高校的本科生、研究生也逐步關注中學人工智能教育的開展并將其作為畢業論文的研究選題。一些師范院校適應形勢要求,已為師范生開設了與此相關的選修課程。?
2 人工智能的教育及教學條件現狀?
通過對本人多年的教學過程進行總結,我校的《人工智能》課程教育現狀可總結為如下幾點:?
(1)理論知識充裕。但與實踐相脫節,特別是在智能科學技術的教育教學方面。盡管知識面相當廣泛,而人工智能理論的普及教育以及智能技術的開發與應用仍然十分滯后。?
(2)同其它普通高等院校一樣,在本校,人工智能技術的研究與應用尚未普及,甚至比不上其它院校。這不利于培養學生的科研興趣及創造精神。?
(3)缺乏配套實驗教材,實驗教學內容缺乏,無法培養學生的研究能力和創新能力。只有開設實驗項目,才能使人工智能的相關知識具有研究性和綜合性。?
(4)對中小學智能教育的深度及教學方式、教學特點缺乏研究。做為師范類院校,我認為在對學生進行基礎知識教育的基礎上,要緊抓中小學智能教育的特點對師范類學生進行相關的教育與培訓。?
相對于教育現狀,我校的《人工智能》課程教學條件現狀要稍好一些,其狀態如下:?
(1)教材使用國家級規劃教材,此教材非常系統地介紹了人工智能的基本原理、方法和應用技術,適合本科及研究生使用。在我們的授課過程中,也會適當為學生提供相關的國內其他先進教材,如中南大學蔡自興教授的《人工智能及其應用》等。?
(2)為了促進學生自主學習,我們準備了多種類型的擴充性學習資料,加強學生主動學習的意識,包括:課程相關雜志和書籍目錄,以及部分重要的參考文獻,與人工智能相關的網絡資源如優秀BBS、新聞組、網址等。 它們包括了大量的文獻資料、本領域研究的前沿動態等。 使用表明,學生非常樂于查閱這些資源。 使學生能通過使用這些資源進行一些人工智能程序設計,探討一些問題,在課堂討論中展示他們的收獲。?
(3)校園網的普及與不斷優化使本課程有優良的實踐性教學環境,能充分滿足教學需要。我們擁有較充足的多媒體教室和網絡教室,為實現本課程教學提供了物質保障。在網絡資源建設方面,全校辦公室、教室、學生宿舍和教師宿舍都以寬帶網相連,這些硬件設備對本課程教學發揮了重要作用,使本課程教學質量得以明顯提高。?
3 人工智能教學方法及手段的改革?
針對我們現在所采取的教學方法,我認為存在許多不足,如教學方式比較單一,教學內容偏重理論講解等,為此,提出以下教學方法的改革:?
(1)通過多種途徑激發學生的學習興趣。課程的學習效果,直接受到學生興趣和參與意識的影響。一般來講,《人工智能》作為一門前沿課程,開始學生學習興趣很大,當開始接觸到抽象理論知識及部分算法時,學生往往感到不易接受。 我們通過各種途徑和方法, 激發和培養學生的學習興趣,包括鼓勵學生參與某部分知識的擴充性資料查找,預留一定時間請學生負責對此內容進行講解,布置學生對某個基本成型的實驗進行糾錯及驗證,降低問題解決的難度。學生因此產生興趣從而做更深度研究。?
(2)進行啟發式教學。 我們可以嘗試在教學過程中不斷提出問題請學生思考,啟發學生求解這些問題,鼓勵學生提出自己的猜想和解決方案,然后擺出教材中的解決方案,并與同學所提出的觀點進行分析和比較,這足以加強學生學習的主動意識和參與意識,提高學生學習的積極性。?
(3)課堂辯論與交互式教學。 組織課堂辯論,討論的議題可定位為譬如人工智能是否能超過人類智能等有爭議的問題。學生通過對這些問題展開激烈爭論,激發了學習潛能,明確了學習目標。當然師生間的交流方式還有很多,如郵件互發、QQ留言等,也可在課程網站中的互動平臺進行交流。?
(4)分層次因材施教。 在授課過程中,通過對每個具體學生的學習進度、課堂作業情況進行及時評估,對學生提出進一步的學習建議和指導, 實現個性化的教學。 對優秀學生探討,可以在教學設計和實驗設計中要求其選作部分探索性、創新性的功課和實驗,以發揮學生個性優勢。對于有意于將來從事中小學教育的學生可以在機器人及人工智能技術發展現狀等知識層面對其做問題講解。而那些看似缺乏興趣的學生,我們可以用多媒體手段如播放人工智能相關電影及科學小片引起其興趣,實行逐步引導的教學過程。?
另外,我們可以嘗試雙語教學。 采用中文教材和講授的同時,注重在課程中的關鍵詞同時用英文表示,并適當指定英文參考短文和英文參考書。使學生能夠接觸國外文獻資料,加深對學習內容的理解,獲得更寬廣的知識。我們也可以在教學內容安排上,注重理論聯系實際,將一些人工智能網絡上的虛擬實驗給學生進行課外上網練習,從而使學生了解算法的具體運行過程, 通過參與達到知識的理解,掌握基本方法和技術。?
根據現有的條件,我們在教學中可以采用多媒體教學和網絡課程教學相結合的方法,充分利用多媒體的豐富表現形式,利用網絡課程的交互性、情景化等特點,構筑以學生為主體的《人工智能》課程現代教學模式。 對于抽象知識,可通過動畫和視頻演示,通過聲音和圖像展示人工智能的歷史、人物和前景,做到學生直接而深刻地看到知識的內涵外延。網絡課程能較好地實現交互并使學習過程情景化,通過網絡課程的課堂練習和章節練習,教師可以評價學生的學習情況,并給學生提出學習建議,從而提高學生的研究力和創新力。我們也可以給學生播放中學《人工智能》課程課堂教學錄像,以使學生看到初高中學生的知識范圍及深度;同時給學生播放現有的《人工智能》科學成果,讓學生看到理論背后的實踐;也可以播放科幻片,激發學生想象的翅膀從而有興趣把人工智能作為將來深造的方向?!度斯ぶ悄堋肥且婚T較新的課程,改進教學方法和手段不僅要靠教師,也應增加硬件設備的投入。如果人工智能能采用智能輔助教學系統或機器人輔助教學過程逼真、形象,一目了然,這樣可大大提高學生的學習效率,尤其是提高學生的觀察判斷能力、發現問題和解決問題的能力。?
4 人工智能實踐教學設計的探討?
我們可以在教學過程中,適量開設一些實驗和設計,提高學生的動手能力,并加深他們對理論知識的理解,降低理論的抽象度,提升理論的實用性。在近兩年的教學過程中,我們會適量加入一些人工智能語言的教學過程。例如,在講解了“野人與傳教士過河”等問題后,我們可以讓學生使用Visual Prolog或者C ?++?對算法進行實現;在講解 TSP 問題的遺傳算法解決案例后,指出編碼方案、初始種群大小、進化代數、交叉率變異率等因素對求解結果的影響,并要求學生通過實驗的方式來分析、理解這些問題,并提出“尋找更有利的解決方案”等問題。把學生的興趣激發后,為解決這些問題,學生會在課外主動查閱相關文獻、相互討論以實現他們所設計的方案,這樣既培養了學生善于鉆研和勇于創新的精神又提高了學生的實踐與創新能力。?
參考文獻:?
[1] 熊德蘭,李梅蓮,鄢靖豐.人工智能中實踐教學的探討[J].宿州學院學報,2008(1).?
1我國農業發展背景和農業培訓必要性分析
11我國農業發展背景
我國是傳統的農業大國,農業對我國的經濟發展具有極其重要的影響,一方面是由于我國人口基數大;另一方面是由于我國進出口貿易主要依靠農產品,農業發展成為影響我國經濟發展最重要的因素之一。但由于各方面原因,我國農業發展還比較落后,尤其與發達國家的現代化農業相比,依舊有較大差距。
12開展農業知識培訓的必要性
反思其他發達國家在?r業發展上實施過的舉措,包括重視農業教育、科研和技術推廣,注意提高勞動者素質;推廣現代農業機械和高技術,重視農場管理;經營集約化、產業化;生產專業化;服務社會化;市場機制與政府扶持相結合;加強農業基礎設施建設等,可以看出,我國在農業知識培訓、素質教育、技術推廣方面與發達國家差距明顯。為發展我國農業,培養一批高素質、懂技術、會經營的農民以及一批愿意為農業發展做出自己貢獻的高學歷人才成為關鍵。農業的發展離不開農民的發展和進步,也離不開受過高等教育的精英人才的共同努力,而開展農業知識培訓,則是為他們的發展奠定了一條夯實的道路。
2人工智能在教育中的應用與發展
近年來,伴隨著人工智能在各行業的應用和發展,人工智能在教育領域中發揮的作用也越來越顯著。例如,智能化的作業批改可以大大減輕教育工作者的沉重負擔,在線學習等網絡教學模式可以讓人們更靈活地接受教育。從人工智能誕生伊始,其就與教育產生了密不可分的聯系,延續發展至今,人工智能在教育領域中的應用主要包含以下幾個方面。
21基于人工智能的計算機網絡課程
計算機網絡教育是對傳統教育方式的一次革新,而人工智能對網絡教育的滲透,又將其推向了新的發展高度。[2]學生可以自主地登錄網絡平臺進行在線學習,根據智能導學系統制訂學習計劃,進行在線測試。例如近年來大為流行的MOOC課程,學生可以便捷地通過網絡獲取全球最高質量的教學資源,并可以量身打造自己的學習計劃。
22基于人工智能的教師輔助系統
近十年來,智能傳感器、語音識別、圖像識別、深度學習、大數據等方面的蓬勃發展令信息的采集及處理越來越準確高效,這無疑使得人工智能與輔助教學系統的融合變得越來越深入。借助于語音識別、圖像識別等技術,學生可以將學習過程中遇到的問題上傳至系統,借助于數據庫系統對信息準確的搜素和整合能力,實時地為學生提供答案或相關信息,答疑解惑。目前此類應用軟件的應用廣泛,例如小猿搜題、百度作業幫等。
23基于人工智能的教育數據庫系統
隨著信息化時代的到來,如何高效地搜集、分類和檢索碎片化的教育信息和教學資源,無疑是一項巨大的挑戰。為了更有效地分配和管理信息,在教育中引入智能化的數據庫系統勢在必行?,F如今數據挖掘和深度學習的研究成果不斷深入,依托知識庫系統對教育信息的整合與構建,學生可以將已習得的零星的知識點進行擴充,由點至面的不斷學習新知識;依托教育資源管理系統中來,教育管理工作者可以合理分配教學資源,讓人們從爆炸式的高密度信息中解放出來,真正做到物為己用,因材施教。
3人工智能與農業知識培訓的結合
新時代社會經濟的發展為國家農業產業的發展翻開了新的篇章,如何加快社會主義農業現代化,促進農業轉型,這為新時代的農業知識教育提出了新的要求。另外,近年來勞動力轉型的趨勢日益顯著。隨著農業勞動人口數量的減少,為了提高農業生產效率,需要有素質、懂知識的農民投入農業生產中來。因而,對于農業知識培訓的革新作為農業現代化建設的重中之重,已被提上日程。
人工智能技術和教育領域融合的不斷完善成熟,基于人工智能的農業知識培訓正如雨后春筍般涌現,在農業教育培訓領域嶄露頭角。
31人工智能應用于農業知識培訓的優勢
從我國農業發展的現狀看,較之于發達國家,我國農業從業者的基數巨大但是整體受教育程度偏低,農業專業領域的知識匱乏,農業知識教育的推廣不僅薄弱,而且效率低下。因此,伴隨著信息化時代“互聯網+”的新型教育模式對傳統教模式的強有力革新,基于人工智能的農業知識培訓展示了其強大的威力和優勢,具體可以總結為如下兩個方面。
311個性化教育針對性強
相比于課堂教學的傳統模式,基于人工智能的網上在線教育模式能夠為學生個性化地制訂學習計劃,靈活安排學習時間。這有力地解決了學生參加農業知識培訓的時間成本問題,農業從業者可利用閑暇時間自主安排學習。另外,針對于培訓者的當前知識水平和培訓需求,培訓平臺可以個性化地安排教學相關領域的專業知識和操作技能。
312教育資源利用率高
我國當前的農業知識培訓,教育教師需求數量和實際在崗教師資源極不匹配,具備豐富農業專業知識和農業生產經驗的教師數量缺乏,這是導致農業知識培訓推廣速度緩慢的重要原因。而人工智能為這一問題的解決帶來了福音,智能化的教學進程得以讓教師從繁重的教學負擔中解放。同時,基于網絡的課程資源共享可以讓先進的農業技術走進千家萬戶,讓學生與優秀農業知識的距離不再遙遠。
4平臺開發的系統架構
基于人工智能技術,一個合理的農業知識培訓平臺能夠像一個優秀的教師那樣具備完備的農業專業知識和優良的教學技能知識,并且能夠模擬及擴充教師的教學過程。除此之外,該培訓平臺還能夠準確實時地與學生進行信息交互,有針對性地開展個性化教學,并可以自適應地完成教學效力評估和反饋,不斷更新和完善教學內容和教學策略?;谝陨戏治觯撻_發平臺的系統架構分為學生模型、教師模型、綜合數據庫模型和人機交互接口四個組成部分,結合下圖對每一部分分別進行詳細闡述。
41學生模型
學生模型應針對不同的學生,準確地評估學生當前的學習水平,對學生的學習背景、知識水平、知識架構進行診斷和評定,以便有針對性地制訂教學方案,進而實施個性化教育。
另外,學生模型需要對學習過程中的學生的學習情況進行記錄入庫,對教育效果進行評定,從而診斷出當前教學計劃是否合適,以便下述教師模型中對教學內容和教學策略的靈活調整。
42教師模型
教師是教學工作開展過程中的主體,一個合理的教師模型應該包括如下三個部分。
教師模型首先完成教學內容的選擇,這要根據學生模型中對學生當前的學習水平的評定,并且針對學生既定的學習目標,并從下述知識庫中調取對應的內容,為教學的開展做好準備。
在確定了教什么的問題之后,教室模型要確定如何教的問題,即選取合理的教學策略開展教學。教學方式的選擇依附于學生模型,而又能根據學生學習情況記錄進行反饋動態,不斷完善和調整教學策略。
另外,在傳統教學模式中,教師傳授知識,并能為學生答疑解惑。當學生在學習過程中遇到問題和疑惑時,教師模型應該實時地提供信息支持,為學生提供針對性的幫助。因而教師模型要實現與人機交互接口的實時連接,在問題到來時控制模塊驅動應答部分為學生答疑解惑。
43綜合數據庫模型
綜合數據庫模塊為農業知識培訓系統提供數據庫支持,主要包括以下三個模塊。
知識庫模塊中分類別地存放著農業領域的專業知識,包括文本、圖像、自然語言、多媒體等多個類型的學習知識。一旦教師模型中完成了教學內容的選擇,便由此模塊中調取相對應的文件開展教學。
專家評估模塊用于處理教學過程中的教學效果評價和經驗總結,為教師模型中的各個環節的反饋和更新迭代提供數據支持。在一個完善的教學過程,教師需要根據學生的學習效果進行總結和反饋,以此指導下一步的教學內容和策略的更新。
為了對學生階段性學習的效果進行評估,還需要引入測試考核模塊對學生的成績進行量化考核。測試考核模塊中包含學生答題庫和成績測評庫,準確檢測出開展農業知識培?的作用與效果。
44人機交互接口
中圖分類號:G64文獻標識碼:A
文章編號:1009-3044(2020)25-0153-03
1引言
智能科學與技術主要包含智能科學和智能技術兩部分內容[1]:智能科學是以人如何認知和學習為研究對象,探索智能機器的實現機理和方法;智能技術則是將這種方法應用于人造系統,使之具有一定的智能或學習能力,讓機器系統為人類工作。目前,在本科專業目錄中,智能科學與技術專業是計算機類之下的特設專業,在現有的人工智能專業群中,除了新設的人工智能專業外(2019年全國共有35所高校獲首批人工智能新專業建設資格),智能科學與技術專業與全球范圍大力推進與快速發展的人工智能關系最密切,契合度最高。一方面,智能科學與技術的專業發展和人才培養將為人工智能技術提供理論支撐、技術推進和人才支持,另一方面,人工智能產業現狀和未來發展趨勢直接影響著智能科學與技術的專業發展和人才需求。
2人工智能時代對人才的需求
站在國家戰略的高度來看,人工智能將成為新一輪產業變革的核心驅動力,可以實現社會生產力的整體躍升,因此人工智能將成為引領未來的戰略性技術,世界主要發達國家都把發展人工智能作為提升國家競爭力、維護國家安全的重大戰略。
隨著人工智能時代的到來,許多企業對具有智能科學與技術專業背景的人才有著巨大的需求。首先,IT企業紛紛涉足智能科學領域,提高產品智能水平;其次,許多傳統制造業也在轉型,從勞動密集型到知識密集型,進一步提升到智能制造型,并逐漸具備高精尖裝備制造能力;此外,醫療、通訊、交通等行業也對智能科技人才有著迫切的需要。人工智能對各行各業的影響,充分體現了智能科技的高速發展,對人才數量和素質要求也越來越高。
從人才的金字塔型分布來看,智能科學與技術領域不僅需要高端學術型人才,更需要接地氣、重實踐的應用型人才。隨著“中國智造”的不斷推進,智能科學與技術領域已由頂層設計和關鍵技術突破向生產、應用、裝配、服務等環節延伸,迫切需求大批專業技術精、實踐能力強、操作流程熟的應用型人才。2019年,人力資源和社會保障部、國家市場監管總局、國家統計局向社會了13個新職業信息,包括人工智能工程技術人員、物聯網工程技術人員、大數據工程技術人員等,這也從另外一個側面說明人工智能等技術推動了產業結構的升級,催生了相關專業技術類新職業,可形成相對穩定的從業人群。
3應用型人才培養模式分析
《中國制造2025》以推進智能制造為主攻方向,強調健全多層次人才培養體系,提到強化職業教育和技能培訓,引導一批普通本科高等學校向應用技術類高等學校轉型,建立一批實訓基地,開展現代學徒制試點示范,形成一支門類齊全、技藝精湛的技術技能人才隊伍。
通常而言,人才類型分為三類[2]:學術型人才、應用型人才、技能型人才。實際上從現代職業教育的發展和社會需求來看,應用型人才和技能型人才的界限相對模糊,可統稱為應用型人才,即把成熟的技術和理論應用到實際的生產、生活中的技術技能型人才。從國家的層面來看,為了適應人工智能時展,人才需求數量基數最多、缺口最大的就是應用型人才,這也對眾多高校培養人才的導向產生重大影響。這里我們重點討論智能科學與技術應用型本科人才的培養,可從職能、知識結構、能力結構、行業(產業)導向四個方面來分析。
3.1職能
智能科學與技術應用型人才是培養面向各類智能科學與技術的工程設計、開發及應用,掌握各類現代智能系統設計、研發、集成應用、檢測與維修、運行與管理等技術,具有扎實理論基礎、較強工程實踐和創新能力的高素質應用型工程技術人才。
3.2知識結構
智能科學與技術專業充分體現了跨學科的特點,其知識結構包含了三個并行的基礎領域:電子信息、控制工程、計算機,也蘊含了電子信息工程、控制科學與工程、計算機科學與技術等學科的交叉和融合,體現了智能感知與模式識別、智能系統設計與制造、智能信息處理三個方面的專業內涵。
(1)智能感知與模式識別
屬于電子信息與計算機交叉領域,主要定位在機器視覺與模式識別。包括三維建模與仿真、圖像處理與分析、圖像理解與識別、機器視覺、模式識別、神經網絡、深度學習等。主要課程包括:電子技術基礎、信號系統與數字信號處理、數字圖像處理、模式識別等。
(2)智能系統設計與制造
屬于控制工程領域,包括自動控制、無人系統與工程、精密傳感器設計與應用等。主要課程包括:機械基礎、工程力學、自動控制原理、傳感器與測試技術、計算機控制技術、機電系統分析與設計等。
(3)智能信息處理
屬于計算機領域,包括交通大數據、汽車與道路安全大數據等的分析與處理、信息處理與知識挖掘、信息可視化等。主要課程包括:智能科學技術導論、計算機程序設計、微機原理與接口技術、數據結構與算法、嵌入式系統設計等。
3.3能力結構
智能科學與技術應用型人才培養著眼于人工智能工程應用,要求學生具有運用計算機及相關軟硬件工具進行大數據的采集、存儲、處理、分析、應用的能力;具備智能系統的設計、開發、集成、運行與管理的能力;注重培養學生綜合運用所學的智能科學與技術專業的基礎理論和知識,分析并解決工程實際問題的能力,其能力結構可以借鑒能力本位教育(CompetencyBasedEducation,簡稱CBE)模式[3]。
CBE是國際上較流行的一種應用型人才培養模式,主要代表國家為加拿大和美國。該模式以能力為人才培養的目標和評價標準,一切教學活動均圍繞綜合職業能力的培養展開,CBE人才培養模式主要有以下三方面的特色:能力導向的教學目標;模塊化的課程結構;能力為基準的目標評價體系。該模式所培養的本科應用型人才具有較強的專業綜合能力和職業能力[4],在一定時期得到社會的廣泛認可,但是單純的CBE模式并不能完全適應人工智能時代對人才培養的需求,這是由于目前許多職業崗位在人工智能的沖擊下,其形式和內容均會產生動態變化,要求現階段的人才培養具有延伸性和前瞻性,既要兼顧眼前,也要考慮應對智能化浪潮,打好基礎,提高自學習能力。因此,智能科學與技術應用型人才培養有一定崗位針對性,但并不是完全固化崗位內容及層次、固化知識屬性,必須強化自我學習能力,才能實現能力可持續增長,崗位的向上流動性以及知識和經驗的進化,才能真正適應人工智能時展的需求。
自我學習能力的形成與提高往往源于知識結構的構建[5]。為了塑造更合適的能力結構,需要CBE模式與知識結構的相輔相成,有鑒于此,將這種新型人才培養模式稱之為知識型能力本位教育(Knowledge&CompetencyBasedEducation,簡稱KCBE)模式,這也意味著在人才培養過程中,將知識結構與能力結構放在并重的地位,既著眼于預期能力的培養,也必須讓學生筑牢學科專業基礎,在走向社會以后,在知識引擎的作用下,通過自我學習,具備并提升適應未來的、新的智能化崗位需求的能力。
3.4行業(產業)導向
從智能科學與技術專業的角度,培養的應用型人才以“智能化應用”為就業大方向,具體而言,包括:
(1)智能感知與模式識別領域
主要從事電子信息的獲取、傳輸、處理、分析、應用等領域的研究、設計及應用,包括圖像處理、機器視覺、工業視頻檢測與識別、視頻監控、傳感器設計及應用等。
(2)智能系統設計與制造領域
主要從事智能裝備、智能制造、智能管理、智能服務等領域的設計、制造及應用,包括智能工廠、智能車間、智能生產線、智能物流、以及智能運營與服務等。
(3)智能信息處理領域
主要從事計算機數據處理、分析、理解、管理、以及服務等領域的研究、設計及應用,包括數據存儲與管理、數據分析與預測、交通大數據分析應用、道路與汽車安全大數據分析、智能交通、智能電力、智能家居、智慧城市等。
涉及的產業領域主要包括智能制造,如工業互聯網系統集成應用,研發智能產品及智能互聯產品等。其他的領域還包括智能農業、智能物流、智能金融、智能商務等。
產業需求帶動人才培養,人才培養在滿足產業需求的同時推動技術進步,而技術進步又引燃了新的產業需求。產業需求與人才培養的相互作用,呈現出螺旋式上升的發展態勢,這在人工智能相關產業與智能科學與技術應用型本科人才培養之間表現的得尤為突出。
4KCBE模式人才培養的主要措施和途徑
智能科學與技術專業應用型本科人才的培養模式一定是和人才需求、學校定位相適應的。培養應用型人才,應注重學生實踐能力,從教學體系建設體現“應用”二字,其核心環節是實踐教學。結合上述的KCBE培養模式,知識結構在能力培養過程中也占有非常重要的地位,因此在能力培養方面,知識和實踐作為兩大要素,不能偏廢任何一方,必須齊頭并進,既要固基礎,也要重實踐。
(1)筑牢智能科學與技術專業知識基礎,構建與智能化應用相關的知識體系
在本科的低年級階段,應注重公共基礎課,特別是數學和力學課程,還應充分了解智能科學與技術專業的內涵,讓學生對所學專業有一個比較全面的認識。在本科中高年級階段,重點強化專業基礎,包括電子技術基礎、自動控制原理、傳感器與測試技術、微機原理與接口技術、數據結構與算法等。歸納地說,應該筑牢數理基礎、計算機基礎、機電基礎和控制基礎,因此對原理課程需要強化,這樣對很多工作機理、來龍去脈的理解才能深刻。
(2)增強智能科學與技術專業的實踐環節,構建以能力培養為重心的教學體系
人工智能時代應運而生的過程,跟大數據的發展差不多,都是從信息獲取到識別,到信息處理分析和反饋,再到最后的經驗存儲、格式化,以及循環的生態凈化。畢竟,大數據、運算能力和產業應用都是人工智能發展的重要因素。當下人們關心的是,重大的產業機構是否會伴隨著人工智能的發展同時到來?是否會同時產生聚集效應?這也是投資很重要的背后邏輯。
中國的人工智能時代,實際上就是互聯網和大數據時代的產業衍生。這是因為互聯網前期的高速發展,從平面互聯網到一維、二維,再到后面快速智能互聯網的發展,整個進程都是循序漸進的。而中國人工智能時代的基礎設施和基礎條件,其實也是逐漸在成熟的。云計算、智能終端、大數據、寬帶、傳感器等產業鏈逐漸成熟,也推動著人工智能的快速爆發。
滴滴出行創始人程維曾在一次演講中表示,互聯網上半場互連的機會已經過去了,下半場就是人工智能。而分享經濟,是未來20年整個互聯網時代最大的發展趨勢。新美大CEO王興也曾在一次工作會議中提出,未來大的互聯網企業,其實重點在運營。過去是做用戶、做流量,接下來的重點就是做運營。把這個點做到極致,真正使互聯網企業效率提高、成本降低、用戶體驗提升。而這三個部分要做好,其實跟人工智能有著重大的關聯?;ヂ摼W上半場連接人人的風口已經基本結束,互聯網下半場運營提升和人機連接的風口正在開始。
中國人工智能應用的產業發展也是逐漸在深化,人工智能的類型大致分為3種。第一是數據挖掘和優化以助于精準營銷部分的應用;第二是軟件、硬件控制,推動工業4.0發展;第三是人機互動,包括智能客服、服務機器人等方面的發展。相對而言,這些是目前正在快速發展的。而未來更多應用的機會將出現在在線醫療、在線教育、車聯網、無人機、工業4.0等方面。
互聯網的下半場屬于人工智能,這已經是大家的共識。但是,資本對互聯網下半場的投資邏輯又是怎樣的呢?
以啟賦資本為例。即使目前在機器人、無人機方面布局不多,但啟賦資本在在線醫療、在線教育、互聯網酒店、酒店智能化應用和工業4.0等方面都有了充分的布局。與此同時,為了獲取巨大的用戶基礎,啟賦資本還投資了大量的產業互聯網平臺型公司。而在人工智能方面,一些能夠早期布局的機會,也是比較珍貴的。
推薦組合:
從基礎層、技術層、應用層的劃分上,短期關注能成功商業化的企業。建議關注新三板企業海鑫科金(430021.OC)、捷尚股份(832325.OC)
在主流的機器學習框架下,從人工智能的數據+算法+計算能力的三要素構成上考慮,建議關注地平線機器人和中科寒武紀。
在細分領域,建議關注圖像和視覺識別的曠視科技(face++)、格靈深瞳、商湯科技、云從(佳都科技),語音識別領域的捷通華聲(Q169597)、云知聲、思必馳,智能客服領域的智臻智能(834869.OC)、中通網絡(835426.OC),服務機器人相關的圖靈機器人、優必選,智能駕駛相關的Minieye、馭勢科技、國科微(新三板待掛牌)等。
行業觀點
算法+數據+計算能力三輪驅動人工智能加速到來:人工智能的發展經歷兩起兩落,目前是第三次崛起。算法、數據和計算能力不同程度的造成了人工智能歷史上發展的低谷期。深度學習是目前最主流的機器學習方法和基礎算法框架,也在不斷的發展和完善中,現在使用不同算法的結合在圖像和語音處理中取得了更好的效果。機器學習的目標是真正實現無監督學習,在朝這個目標發展的過程中,遷移學習和聚焦模型是最有前景的方向之一。人工智能所需要的計算能力未來將適應“云+端”的模式,在IOT時代,用于“端”的機器學習計算能力,低功耗、低成本、低體積均是重要的發展目標。
政策助力,巨頭加碼,人工智能發展如火如荼:發達國家已充分認識到人工智能的戰略意義,紛紛從國家戰略層面對人工智能加緊布局。美國、歐盟和日本均開始大腦研究計劃。國內對于人工智能的相關扶植政策已出臺?;ヂ摼W公司和科技巨頭也加大力度進行人工智能領域的布局,人才爭奪激烈。人工智能相關的創業公司也不斷涌現,風險資本競相進入。
人工智能的技術逐漸成熟,應用逐步落地:語音識別、圖像和視頻識別是相對成熟的技術,國內公司在相關領域處于世界領先水平。自然語言處理是認知智能的更高層級目標,未來進步空間巨大。隨著技術的不斷走向成熟,各細分領域的應用已開始逐步落地。
“+人工智能”成為行業和場景未來智能化的趨勢:人工智能是未來產業變革的基礎力量,對不同行業和場景的智能化改造是未來趨勢。安防、金融、醫療、汽車、制造業、教育、廣告、傳媒、法律、智能家居、農業等均是人工智能落地的方向。
【中圖分類號】G40-057 【文獻標識碼】A 【論文編號】1009―8097(2008)13―0018―03
人工智能是一門綜合的交叉學科,涉及計算機科學、生理學、哲學、心理學、哲學和語言學等多個領域。人工智能主要研究用人工的方法和技術,模仿、延伸和擴展人的智能,實現機器智能,其長期目標是實現人類水平的人工智能。[1]從腦神經生理學的角度來看,人類智能的本質可以說是通過后天的自適應訓練或學習而建立起來的種種錯綜復雜的條件反射神經網絡回路的活動。[2]人工智能專家們面臨的最大挑戰之一是如何構造一個可以模仿人腦行為的系統。這一研究一旦有突破,不僅給學習科學以技術支撐,而且能反過來促使人腦的學習規律研究更加清晰,從而提供更加切實有效的方法論。[3]人工智能技術的不斷發展,使人工智能不僅成為學校教育的內容之一,也為教育提供了豐富的教育資源,其研究成果已在教育領域得到應用,并取得了良好的效果,成為教育技術的重要研究內容。
人工智能的研究更多的是結合具體領域進行的,其主要研究領域有:專家系統、機器學習、模式識別、自然語言理解、自動定理證明、自動程序設計、機器人學、博弈、智能決策支持系統、人工神經網絡和分布式人工智能等。[4]目前,在教育中應用較為廣泛與活躍的研究領域主要有專家系統、機器人學、機器學習、自然語言理解、人工神經網絡和分布式人工智能,下面就這些領域進行闡述。
一 專家系統
專家系統是一個具有大量專門知識與經驗的程序系統,它使用人工智能技術,根據某個領域中一個或多個人類專家提供的知識和經驗進行推理和判斷,模擬人類專家的決策過程,以解決那些需要專家決定的復雜問題。[5]專家系統主要組成部分為:知識庫,用于存儲某領域專家系統的專門知識;綜合數據庫,用于存儲領域或問題的初始數據和推理過程中得到的中間數據或信息;推理機,用于記憶所采用的規則和控制策略的程序,使整個專家系統能夠以邏輯方式協調地工作;解釋器,向用戶解釋專家系統的行為;接口,使用戶與專家系統進行對話。近幾十年來,專家系統迅速發展,是人工智能中最活躍、最有成效的一個研究領域,廣泛用于醫療診斷、地質勘探、軍事、石油化工、文化教育等領域。
目前,專家系統在教育中的應用最為廣泛與活躍。專家系統的特點通常表現為計劃系統或診斷系統。計劃系統往前走,從一個給定系統狀態指向最終狀態。如計劃系統中可以輸入有關的課堂目標和學科內容,它可以制定出一個課堂大綱,寫出一份教案,甚至有可能開發一堂樣板課,而診斷系統是往后走,從一個給定系統陳述查找原因或對其進行分析,例如,一個診斷系統可能以一堂CBI(基于計算機的教學,computer-based instruction)課為例,輸入學生課堂表現資料,分析為什么課堂的某一部分效果不佳。在開發專家計劃系統支持教學系統開發(ISD)程序的領域中最有名的是梅里爾(Merrill)的教學設計專家系統(ID Expert)。[6]
教學專家系統的任務是根據學生的特點(如知識水平、性格等),以最合適的教案和教學方法對學生進行教學和輔導。其特點為:同時具有診斷和調試等功能;具有良好的人機界面。已經開發和應用的教學專家系統有美國麻省理工學院的MACSYMA符號積分與定理證明系統,我國一些大學開發的計算機程序設計語言、物理智能計算機輔助教學系統以及聾啞人語言訓練專家系統等。[7]
目前,在教育中,專家系統的開發和應用更多的集中于遠程教育,為現代遠程教育的智能化提供了有力的技術支撐。基于專家系統構造的智能化遠程教育系統具有以下幾個方面的功能:具備某學科或領域的專門知識,能生成自己的提問和應答; 能夠分析學生的特征,評價和記錄學生的學習情況,診斷學生學習過程中的錯誤并進行補救教學;可以選擇不同的教學方法實現以學生為主體的個別化教學。[8]目前應用于遠程教育的專家系統有智能決策專家系統、智能答疑專家系統、網絡教學資源專家系統、智能導學系統和智能網絡組卷系統等。
二 機器人學
機器人學是人工智能研究是一個分支,其主要內容包括機器人基礎理論與方法、機器人設計理論與技術、機器人仿生學、機器人系統理論與技術、機器人操作和移動理論與技術、微機器人學。[9]機器人的發展經歷了三個階段:第一代機器人是以 “示教―再現”方式進行工作;第二代機器人具有一定的感覺裝置,表現出低級智能;第三代機器人是具有高度適應性的自治機器人,即智能機器人。目前開發和應用的機器人大多是智能機器人。機器人技術的發展對人類的生活和社會都產生了重要影響,其研究和應用逐漸由工業生產向教育、環境、社會服務、醫療等領域擴展。
機器人技術涉及多門科學,是一個國家科技發展水平和國民經濟現代化、信息化的重要標志,因此,機器人技術是世界強國重點發展的高技術,也是世界公認的核心競爭力之一,很多國家已經將機器人學教育列為學校的科技教育課程,在孩子中普及機器人學知識,從可持續和長遠發展的角度,為本國培養機器人研發人才。[10]在機器人競賽的推動下,機器人教育逐漸從大學延伸到中小學,世界發達國家例如美國、英國、法國、德國、日本等已把機器人教育納入中小學教育之中,我國許多有條件的中小學也開展了機器人教育。
機器人在作為教學內容的同時,也為教育提供了有力的技術支撐,成為培養學習者創新精神和實踐能力的新的載體與平臺,大大豐富了教學資源。多年來,我國中小學信息技術教育的主要載體是計算機和網絡,教學資源單一,缺乏前瞻性。教學機器人的引入,不僅激發了學生的學習興趣,還為教學提供了豐富的、先進的教學資源。隨著機器人技術的發展,教學機器人種類越來越多,目前在中小學較為常用的教學機器人有:能力風暴機器人、通用機器人、未來之星機器人、樂高機器人、納英特機器人、中鳴機器人等。
三 機器學習
機器學習是要使計算機能夠模仿人的學習行為,自動通過學習來獲取知識和技巧,[11]其研究綜合應用了心理學、生物學、神經生理學、邏輯學、模糊數學和計算機科學等多個學科。機器學習的方法與技術有機械學習、示教學習、類比學習、示例學習、解釋學習、歸納學習和基于神經網絡的學習等,近年來,知識發現和數據挖掘是發展最快的機器學習技術。機器學習(自動獲取新的事實及新的推理算法)是使計算機具有智能的根本途徑,對機器學習的研究有助于發現人類學習的機理和揭示人腦的奧秘。[12]
隨著計算機技術的進步和機器學習研究的深入,機器學習系統的性能大大提高,各種學習算法的應用范圍不斷擴大,例如將連接學習用于圖文識別,歸納學習、分析學習用于專家系統等,大大推動了在教育中的應用,例如在建構適應性教學系統中,用機器學習與樸素的貝葉斯分類器動態了解學生的學習偏好,有較高的準確率[13]?;诎咐耐评恚╟ase-based reasoning,CBR)是一種新興的機器學習和推理方法,其核心思想是重用過去人們解決問題的經驗解決新問題,在計算機輔助教育方面,已經出現了基于CBR的圖形仿真教育系統,并且,針對個體特征的教育教學方法研究也有所突破。[14]另外,數據挖掘和知識發現在生物醫學、金融管理、商業銷售等領域的成功應用,不僅給機器學習注入新的生機,也為機器學習在教育中的應用提供了新的前景。
四 自然語言理解
自然語言理解就是研究如何讓計算機理解人類的自然語言,以實現用自然語言與計算機之間的交流。一個能夠理解自然語言信息的計算機系統看起來就像一個人一樣需要有上下文知識以及根據這些上下文知識和信息用信息發生器進行推理的過程。[15]自然語言理解包括口語理解和書面理解兩大任務,其功能為:回答問題,計算機能正確地回答用自然語言提出的問題;文摘生成,計算機能根據輸入的文本產生摘要;釋義,計算機能用不同的詞語和句型來復述輸入的自然語言信息;翻譯,計算機能把一種語言翻譯成另外一種語言。由于創造和使用自然語言是人類高度智能的表現,因此對自然語言處理的研究也有助于揭開人類高度智能的奧秘,深化對語言能力和思維本質的認識。[16]
自然語言理解最早的研究領域是機器翻譯,隨著應用研究的廣泛開展,也為機器人和專家系統的知識獲取提供了新的途徑,例如由MIT研制的指揮機器人的自然語言理解系統SHRDLU就可以接收自然語言,進行人機對話,回答關于桌面上積木世界中的各種問題。同時,對自然語言理解的研究也促進了計算機輔助語言教學和計算機語言設計等方面的發展,例如“希賽可”網絡智能英語學習系統,這個基于網絡的“人-機”語境的建立,突破了普通英語教師和傳統的單機的多媒體教學軟件所能具備能力限制,也比建立于網絡的“人-人”語境更具靈活性,可以為遠程學習者提供良好的英語學習支持,在國內第一次系統地將用自然語言進行的人機對話系統應用在計算機輔助外語教學上,在國際上也是一種創新。[17]
五 人工神經網絡
人工神經網絡就是在對大腦的生理研究的基礎上,用模擬生物神經元的某些基本功能的元件(即人工神經元),按各種不同的聯結方式組織起來的一個網絡,其目的在于模擬大腦的某些機理與機制,實現某個方面的功能,例如可以用于模仿視覺、模式識別、聲音信號處理、控制、故障診斷等領域,人工神經元是人工神經網絡的基本單元。[18]人工神經網絡有兩種基本結構:遞歸(反饋)網絡和多層(前饋)網絡,兩種主要學習算法:有指導式學習和非指導式學習。
人工神經網絡從模擬人類大腦神經網絡的結構和行為出發,具有大規模并行、分布式存儲和處理、自組織、自適應和自學習能力,特別適合于處理需要同時考慮許多因素和條件的、不精確和模糊的信息處理問題,[19]這使人工神經網絡具有更大的發展潛能,目前已經開發和應用的人工神經網絡模型有30多種。人工神經網絡在教育中的應用大多是與教學專家系統相結合,以此來改進教學專家系統的性能,提高智能性,使其在教學過程中對突發問題具有更好的應對能力。人工神經網絡在學校管理中也得到應用,例如采用誤差反傳算法(BP)的多層感知器已應用于高校管理之中。
六 分布式人工智能(Distributed Artificial Intelligence,DAI)
分布式人工智能是分布式計算與人工智能結合的結果,研究目標是要創建一種能夠描述自然系統和社會系統的精確概念模型,主要研究問題是各Agent之間的合作與對話,包括分布式問題求解和多Agent系統兩個領域。[20]分布式人工智能系統一般由多個Agent組成,每個Agent又是一個半自治系統,Agent之間及Agent與環境之間進行并發活動并進行交互來完成問題求解。[21]由于分布式人工智能系統具有并行、分布、開放、協作和容錯等優點,在資源、時空和功能上克服了單智能系統的局限性,因此獲得了廣泛的應用。
分布式人工智能中的Agent和多Agent技術在教學中的應用逐漸受到關注。在教學中引入Agent可以有效地提高教學系統的智能性,創造良好的學習情境,并能激發學習者的學習興趣,進行個性化教育。目前,Agent和多Agent技術多用于遠程智能教學系統,通過利用其分布性、自主性和社會性等特點,提高網絡教學系統的智能性,使教學資源得到充分利用,并可實現對學習者的學習行為進行動態跟蹤,為學習者的網絡學習創造合作性的學習環境。在網絡教學軟件中應用Agent技術的一個典型是美國南加利福尼亞大學(USC)開發的教學Adele(Agent for Distance Education - Light Edition) [22]。Agent技術在網絡教學軟件中取得的良好效果,促進了研究者對分布式人工智能在教育中的應用研究。
綜上所述,科學技術的發展將會推動人工智能技術在教育中應用的廣度和深度。從人工智能的應用趨勢來看,人工智能在教育中應用的擴展可以通過以下三個方面進行:一是人工智能與其他先進信息技術結合。人工智能已經與多媒體技術、網絡技術、數據庫技術等有效的融合,為提高學習效率和效度提供了有力的技術支持,而引起教育技術界廣泛關注。[23]例如人工智能技術通過與多媒體技術相結合,可以提高智能教學系統的教學效果;與網絡通訊技術相結合,可以提高和改進遠程教育的智能性。二是人工智能應用研究領域間的集成。人工智能應用研究領域之間并不是彼此獨立,而是相互促進,相互完善,它們可以通過集成擴展彼此的功能和應用能力。例如自然語言理解與專家系統、機器人的集成,為專家系統和機器人提供了新的知識獲取途徑。三是人工智能的研究和應用出現了許多新的領域,它們是傳統人工智能的延伸與擴展,這些新領域有分布式人工智能與Agent、計算智能與進化計算、數據挖掘與知識發現以及人工生命等[24],這些發展與應用蘊藏著巨大潛能,必將對教育產生重要的影響。
技術發展不斷發揮著引導教育技術研究的作用,一種新興技術的出現總是會掀起相應的研究熱潮, 引發對技術在教育中應用的探討、評價以及與傳統技術的對比。[25] 人工智能作為一門交叉的前沿學科,雖然在基本理論和方法等方面存在著爭論,但從其研究成果與應用效果來看,有著廣闊的應用前景,值得進一步的開發和利用。
參考文獻
[1] 史忠植,王文杰.人工智能[M].北京:國防工業出版社,2007:1.
[2][11][18][19] 《計算機與信息科學十萬個為什么》叢書編輯委員會,計算機與信息科學十萬個為什么(8):人工智能[M].北京:清華大學出版社,1998:5,189,78-79,84.
[3] 任友群,胡航.論學習科學的本質及其學科基礎[J].中國電化教育,2007,(5):1-5.
[4][21] 蔡瑞英,李長河.人工智能[M].武漢:武漢理工大學出版社,2003:12-13.
[5][12][15][20][24] 蔡自興,徐光.人工智能及其應用(第三版)――研究生用書[M].北京:清華大學出版社,2007: 12-14,19-20.
[6] [荷]山尼•戴克斯特拉,[德]諾伯特•M. 西爾,[德]弗蘭茲•肖特,等.任友群,鄭太年主譯.教學設計的國際觀第2冊:解決教學設計問題[M].北京:教育科學出版社,2007:67.
[7] 任友群.技術支撐的教與學及其理論基礎[M].上海:上海教育出版社,2007:42-43.
[8] 路利娟.應用專家系統提升現代遠程教育的智能化[J].中國教育技術裝備,2007,(12):79-80.
[9] 陳懇,楊向東,劉莉等.機器人技術與應用[M].北京:清華大學出版社,2007:6.
[10] 關注機器人幼兒教育――訪鮑青山博士[DB/OL].
[13] 柏宏權,韓慶年.機器學習在適應性教學系統中的應用研究[J].南京師范大學學報(工程技術版),2007,7(4):76-79.
[14] 楊健,趙秦怡.基于案例的推理技術研究進展及應用[J].計算機工程與設計,2008,29(3):710-712.
[16] 自然語言理解[DB/OL].
[17] 賈積有.人工智能技術的遠程教育應用探索――“希賽可”智能型網上英語學習系統[J].現代教育技術,2006,16(2):26-29.