時間:2023-03-02 15:10:14
序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇cdma技術論文范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!
一、事件及背景分析
中國已經逐漸進入廣泛使用第三代移動通信技術(俗稱3G)的時代,但對電信運營商而言,3G網絡的建設和運營具有規模大、分階段、周期長和未來不確定性較高等特點。如何評估3G項目的投資價值一直是廣為關注的焦點。傳統的項目投資價值分析方法不能滿足對不確定性較高的項目進行定價的要求。復合實物期權定價模型能更貼切地反映在3G項目中的多重期權特性,更適合對階段性較強的項目進行價值分析。本文將運用復合實物期權模型對澳門基于cdma技術的3G項目進行定價分析。
澳門3G項目(CDMA技術標準)的建設具有明顯的階段性,其投資歷程如下:
表1-1 澳門CDMA投資歷程
時間
事件
意義
投資計劃
2005年3月10日
中國聯通中標獲得澳門CDMA牌照
正式進入澳門移動通信市場
-
2005年5月27日
中國聯通獲準經營采用CDMA2000 1X系統的公共地面流動通信電信網絡及提供跨地域流動電信服務,有效期為8年。
中國聯通獲準提供CDMA漫游服務的權利
首年投資1.71億澳門元,建成CDMA 1X制式網絡,以提供漫游服務
2005年10月18日
CDMA澳門流動電信網絡開通
開始提供CDMA漫游服務
-
2006年8月10日
中國聯通獲準經營采用CDMA2000 1X系統的公共地面流動通信電信網絡及提供兩個頻段內運作的公用地面流動電信服務
中國聯通獲得本地運營CDMA服務牌照。CDMA2000 1X可平滑升級到3G網路。
2006年計劃增加投資4800萬澳門元,在后續二年內累計投資額不低于4000萬元
2007年5月29日
中國聯通獲正式建立及運營3G的牌照
建立及運營CDMA2000 1X EV-DO系統,真正提供3G服務
為建立3G業務,首年將投資4000萬澳門元;隨后三年累計投資超過9000萬澳門元
2008年7月27日
1.引言
碼分多址(code division multiple acce-ss,CDMA)系統作為一個自干擾系統,它存在的多址干擾(Multiple Access Inter-ference,MAI)是限制CDMA系統容量和性能的主要因素。在抗MAI方面,近年的研究主要提出了多用戶檢測、擴頻碼設計和智能天線技術[1]。其中多用戶檢測和智能天線技術在對抗MAI方面效果較突出[2]。然而現有的多用戶檢測只在消除小區內干擾方面取得了較好的效果,而小區間的干擾問題沒有解決,智能天線技術很好的解決了這一問題。因此,本文主要探討基于智能天線與多用戶檢測技術的聯合抗干擾技術。
2.聯合抗干擾模型
智能天線分為圓陣和線陣兩大類。圓陣與線陣相比,能提供俯仰角的估計,不僅能在水平面內全向掃描,也能產生最大值指向陣面法線方向的單波束方向圖進行全向波束賦形,直接對準用戶的接收端,還能通過自動調整各個陣元的加權因子,來控制其方向圖。故論文以圓陣天線作為接收端的接收天線,以消除小區間干擾。
圓陣天線的陣因子為:
(1)
其中,An為激勵電流的幅值,在此為一定值,所以討論陣因子時它不作考慮。
是第n個單元的角位置,an為激勵電流的相位,為了方便下面的討論,這里我們假設an=0。
則由式(1)得:
(2)
(3)
式中:
,
天線的陣因子為:,,wi為各天線單元加權值。
陣列天線實質上是一個空域濾波器,但對小區內存在的干擾并無明顯改善。因此,論文同時引入能有效消除小區內干擾的多用戶檢測技術。
為了與圓陣天線合理匹配,減小系統復雜度并減小背景噪聲,我們選擇了多用戶檢測中的線性變換方式的最小均方誤差檢測(MMSE)。
其基本思想是使第k個用戶發送的信號與估計值的均誤方差值最小。為了使接收端信號的判決比特與發送端傳輸比特bk之間的均方誤差最小,現定義第k個用戶的線性變換函數wk,滿足:
(4)
令,K*K階的矩陣表示K個用戶之間的線性變換矩陣,則MMSE準則下的線性檢測問題轉換為:
(5)
要求矩陣W以滿足上式,則令:
可以解得最小均誤方差準則下的線性變換矩陣:
(6)
因此,MMSE線性檢測器后的判決輸出為:
(7)
3.仿真
利用Matlab進行仿真。聯合抗干擾模型分為圓環陣列天線與MMSE檢測兩個部分。首先,在不考慮系統中所有用戶的地理位置分布情況下,選擇采用圓陣天線作為接收天線和不采用兩種設置,設載波波長為,陣元間距d為載波波長的二分之一,即。圓環陣列天線的陣元數設為8,方位角為(-90o,90o),仰角為(0o,90o)。兩種設置在天線接收信號后都采用MMSE最小均方誤差法對輸出信號進行判決。結果如圖1所示。
由圖1可知,只有MMSE檢測的CDMA系統,信噪比從0dB達到8dB的這一過程中,誤碼率性能有所改善,但不明顯。而引合抗干擾的CDMA系統,誤碼率性能已經大大下降,達到一個數量級以上。
圖1 聯合抗干擾引入前后CDMA系統誤碼率
和信噪比關系圖
4.結論
論文論述了基于圓陣天線與MMSE檢測的聯合抗干擾技術。提出了使用八陣元圓環陣列天線作為接收天線,以MMSE檢測作為檢測算法的聯合抗干擾模型。實驗結果表明,引合抗干擾后,系統的誤碼率性能明顯改善,系統容量從而得到了提升。
參考文獻
[1]Guerci J.R.,Driscoll T.,Hannigan R.,etc..Next Generation Affordable Smart Antennas[J].Microwave Journal,2014,57(1):24-40.
一、LS碼簡介
多載波碼分多址(MC-CDMA)技術是將正交頻分復用和碼分多址技術相結合,集兩者優點于一體的一項新技術,它采用擴頻碼對原始數據擴頻后將每個碼片調制到不同的子載波上,可獲得頻率分集的效果,對于這種技術接入碼的相關性能非常重要,這里將李道本教授發明的一種新型的擴頻碼一零相關窗互補碼(LS碼)應用于MC-CDMA系統中。LS碼是一種具有互補相關性質的碼,每個LS碼均由兩部分C碼和S碼構成,采用由兩位二進制正交基和生成樹擴展方式生成長為64的LS碼,得到相關函數仿真圖,如圖1可看出LS碼的互相關函數在原點附近是零,這個區域被稱作無干擾窗,在此窗口內可以減小甚至消除符號間干擾和多址干擾。自相關函數在無干擾窗口內自相關值為一脈沖值。從其相關函數仿真圖中可看出LS碼的相關性能優良,適宜應用于多載波碼分多址系統從而降低誤碼率[1][2]。
二、MC-LS-CDMA通信系統模型
2.1發射機模型
LS碼應用于MC-CDMA系統的發射機結構如圖2所示。發送端對用戶數據bk(t)進行串并變換,轉換為M個并行分支,然后將每一個并行分支碼元分別與擴展碼sk(n)的不同碼片相乘,完成頻域擴頻操作。sk(n)的碼長為N,那么總的并行分支有M×N個。這N個并行數據被分別調制到N個正交的子載波上得到一個多載波符號。每個多載波符號的前部插入一個保護間隔是為了消除由多徑而引起的符號間干擾ISI。最后信號被載波fc(t)進行頻譜搬移形成射頻信號后發送出去[3]。
2.2接收機模型
MC-CDMA接收機的部分結構示意圖如圖3所示,假設信道為頻率選擇性瑞利衰落信道。在下變頻后,N個子載波首先利用FFT進行解調,然后與一個增益系數Gkj相乘后將被擴展到各子載波的能量相加。形成判決變量。在考慮信道的情況下,簡化后的接收信號即為第m個分支的多載波接收信號:
此MC-LS-CDMA系統用到的擴頻序列LS碼碼長為20,所以原始數據被調制到20個載波上。兩個用戶的原始數據經過此仿真系統可以恢復原始數據,LS碼在MC-CDMA系統的可行性得到了驗證。
四、基于LS碼的MC-CDMA系統誤碼率仿真
系統仿真條件為:采用的原始數據個數為104,調制方式為BPSK,高斯白噪聲信道,MC-LS-CDMA系統采用的是68個子載波,本文考慮的用戶數為1,4,8,16。觀察圖5可知,單用戶與多用戶的BER性能幾乎沒有差別,這說明基于LS碼的MC-CDMA系統在多用戶的情況下具有良好的抗多址干擾(MAI)性能,這是由LS碼具有理想的自互相關特性所決定的[5]。
參考文獻
[1]施建超,黃華. LAS碼的構造及LAS-CDMA相對于傳統CDMA的優勢.通信技術,2007(12)
[2] Hancheng Liao,Daoben Li,Qingrong Zhang.An example of LS codes. ICCC China 2004,Beijing,Oct. 2004:pp. 918~920
一、引言
上世紀70年代末,誕生了被稱為第一代蜂窩移動通信系統的雙工FDMA模擬調頻系統,但由于模擬系統固有的先天缺陷,在90年代初被以TDMA為基礎的第二代數字蜂窩移動通信系統所取代,相對FDMA系統有諸多優點,如頻譜利用率高,系統容量大、保密性好等。與此同時產生了以CDMA為基礎的數字蜂窩通信系統,相比TDMA系統具有低發射功率、信道容量大、軟容量、軟切換、采用多種分集技術等優點。
隨著網絡的廣泛普及,圖像、話音和數據相結合的多媒體和高速率數據業務的業務量大大增加,人們對通信業務多樣化的要求也與日俱增,而一代二代系統遠遠不能滿足用戶的這些需求,所以誕生了第三代移動通信技術,它能夠處理圖像、音樂、視頻流等多種媒體形式,提供包括網頁瀏覽、電話會議、電子商務等多種信息服務。國際上承認的3G標準有三個:CDMA2000、WCDMA以及TD-SCDMA,這里主要從各個方面做WCDMA和CDMA2000的對比研究。
二、WCDMA和CDMA2000的綜合比較
由于WCDMA和CDMA2000這兩種技術都是將CDMA技術用于蜂窩系統,許多的思想都是源于CDMA系統,因此WCDMA和CDMA2000有許多相試之處:從雙工方式上看,WCDMA和CDMA2000屬于FDD模式。WCDMA和CDMA2000都滿足IMT-2000提出的技術要求,支持高速多媒體業務、分組數據和IP接入等。但它們在技術實現、規范標準化、網絡演進等方面都存在較大差異。
WCDMA和CDMA2000各有優勢和缺點。WCDMA技術較成熟,能同廣泛使用的GSM系統兼容;相比第二代通信系統能提供更加靈活的服務;而且WCDMA能靈活處理不同速率的業務。其缺點是只能共用現有GSM系統的核心網部分,無線側設備可以共用的很少。
CDMA2000的優勢是可以和窄帶CDMA的基站設備很好地兼容,能夠從窄帶CDMA系統平滑升級,只需增加新的信道單元,升級成本較低,核心網和大部分的無線設備都可用。容量也比IS-95A增加了兩倍,手機待機時間也增加了兩倍。缺點是CDMA2000系統無法和GSM系統兼容。
1.WCDMA與CDMA2000的物理層技術比較
WCDMA和CDMA2000物理層技術細節上有相似也有差異,由于考慮出發點不同,造成了不同的技術特點。WCDMA技術規范充分考慮了與第二代GSM移動通信系統的互操作性和對GSM核心網的兼容性;CDMA2000的開發策略是對以IS-95標準為藍本的窄帶CDMA的平滑升級。
(1)這兩個標準的物理層技術相似點可以歸納為以下幾點:
①內環均采用快速功率控制。CDMA系統是干擾受限系統,因此為了提高系統容量,應盡可能的降低系統的干擾。功率控制技術可以減少一系列的干擾,這意味著同一小區內可容納更多的用戶數,即小區的容量增加。因此CDMA系統中引入功率控制技術是非常必要的。
②系統都支持開環發射分集,信道編碼采用卷積碼和Turbo碼。
③系統均采用軟切換技術。所謂軟切換是指移動臺需要切換時,先與新的基站連通再與原基站切斷聯系,而不是先切斷與原基站的聯系再與新的基站連通。軟切換只能在同一頻率的信道間進行,因此模擬系統、TDMA系統不具有這種功能。軟切換可以有效地提高切換的可靠性,大大減少切換造成的掉話。
④WCDMA工作頻段:1900~2025MHz頻段分配給FDD上行鏈路使用,2110~2170MHz頻段分配給FDD下行鏈路使用,2110~2170MHz頻段分配給TDD雙工方式使用。其中WCDMA和CDMA2000利用1900~2025MHz頻段(上行),2110~2170MHz(下行)。
(2)兩個標準的物理層技術差異可以歸納為以下幾點:
①擴頻碼片速率和射頻帶寬。WCDMA根據ITU關于5MHz信道基本帶寬的劃分規則,將基本碼片速率定為3.84Mcps。WCDMA使用帶寬和碼片速率是CDMA2000-1X的3倍以上,能提供更大的多路徑分集、更高的中繼增益和更小的信號開銷。CDMA2000分兩個方案,即CDMA2000-1X和CDMA2000-3X兩個階段。CDMA2000系統可支持話音、分組數據等業務,并且可實現QoS的協商。室內最高數據速率達2Mbit/s,步行環境384kb/s,車載環境144kb/s。CDMA2000在前向和反向CDMA信道在單載波上采用碼片速率1.2288Mcps的直接序列擴頻,射頻帶寬為1.25MHz。
②支持不同的核心網標準。WCDMA要求實現與GSM網絡的兼容,所以它把GSMMAP協議作為上層核心網絡議;CDMA2000要求兼容窄帶CDMA,因此它把ANSI-41作為自己的核心網絡協議。
③WCDMA進行功率控制的速度是CDMA2000的2倍,能保證更好的信號質量,并支持多用戶。
④為了使支持基于GSM的GPRS業務而部署的所有業務也支持WCDMA業務,為了完善新的數據話音網絡,CDMA2000-1x需要添加額外的網元或進行功能升級。
2.WCDMA與CDMA2000網絡接口的比較
3G標準的基本目標是能在車載、步行和靜止各種不同環境下為多個用戶分別提供最高為144kbit/s、384kbit/s和2048kbit/s的無線接入數據速率。為多個用戶提供可變的無線接入數率是3G標準的核心要求。CDMA2000可分別用于900MHZ和2GHZ兩個頻段CDMA2000的碼片速率與IS-95相同,兩系統可以兼容。WCDMA的碼片速率為3.84Mcps,顯然WCDMA系統中低速率用戶或語音用戶的移動臺成本會大幅上升,在CDMA2000系統中則不會如此。
WCDMA的接口標準規范、制定嚴謹、組織嚴密,而CDMA2000的接口標準嚴謹性有待加強。IS-95廠家設備難以互通,給運營商設備選型帶來了較大問題;3G許諾的高速無線數據服務必須可以和話音一樣實現無縫的漫游,這是至關重要的。多媒體信息要漫游、視頻通話也要漫游,沒有這些基本要素,3G就不能稱其為3G。漫游涉及到的不僅僅是技術問題,更重要的是商業利益。在這方面WCDMA顯然更勝一籌,它支持全球漫游,全球移動用戶均有唯一標識,而CDMA2000尚不能很好做到這一點。
3.WCDMA和CDMA2000網絡演進的比較
(1)WCDMA的網絡演進技術
現有的GSM系統利用單一時隙可提供9.6kbit/s的數據服務。如果復用多個時隙就能升級為HSCSD(高速電路交換數據)方式;此后出現了GPRS(通用分組無線業務),首次在核心網中引入了分組交換的方式,可提供144kbit/s的數據速率。接著繼續升級采用8PSK調制,這樣傳輸速率可以上升至384kbit/s這就是EDGE;WCDMA的數據傳輸速率將高達2M/s。
(2)CDMA2000網絡演進技術
主要的CDMA2000運營商將來自現在的窄帶CDMA運營商。窄帶CDMA向CDMA2000過渡的方式為IS-95AIS95BIS-95CIMT2000。IS-95A的數據傳輸速率為14.4kbit/s,為了提供更高的速率,1999年部分廠商開始采用IS-95B標準,理論上支持115.2kbit/s的速率。IS-95C進一步使容量加倍,最后升級為CDMA2000。
窄帶CDMA系統向CDMA2000系統的演進分為空中接口、網絡接口及核心網絡演進等方面。
①目前窄帶CDMA系統的空中接口是基于IS295A,其支持的數據速率為14.4kbit/s,由IS295A升級到IS295B,可支持64kbit/s。
②窄帶CDMA網絡接口的演進主要指窄帶CDMA系統A接口的升級和演進。對于窄帶CDMA系統,以前其A接口不是規范接口(即不是開放接口),窄帶CDMA和GSM的A接口的規范相比較,GSM是先有A接口標準,然后廠家依據標準開發;窄帶CDMA是廠家各自開發,然后廣泛宣傳,最后憑借自身影響修改標準。
③窄帶CDMA的核心網在美國經過多年發展后,從IS241A到IS241B到IS241C,我國CDMA試驗網和紅皮書以IS241C為基礎,IS241D規范在1999年底,目前IS241E規范還未正式。
三、WCDMA和CDMA2000在我國的前景
對3G標準的選擇不僅要看其技術原理及成熟程度,還要結合本國國情、市場運作狀況等因素進行考慮。按目前的進展來看,兩種標準最后不能融合成一種,但可以共存。
在我國,GSMMAP網絡已形成巨大的規模,歐洲標準的WCDMA在網絡上充分考慮到與第二代的GSM的兼容性,在技術上也考慮了與GSM的雙模切換兼容,向WCDMA體制的第三代系統演進,從一開始就解決了全網覆蓋的問題。而且CDMA2000采用GPS系統,對GPS依賴較大;在小區站點同步方面,CDMA2000基站通過GPS實現同步,將造成室內和城市小區部署的困難,而WCDMA設計可以使用異步基站,運營者獨立性強;對于電信設備制造行業,我國在GSM蜂窩移動通信方面發展成熟,而窄帶CDMA系統尚未形成規模和產業。
WCDMA采用全新的CDMA多址技術,并且使用新的頻段及話音編碼技術等。因此GSM網絡雖然可采用一些臨時的替代方案提供中等速率的數據服務,卻不能提供一種相對平滑的路徑以過渡到WCDMA。而CDMA2000的設計是以IS-95系統的豐富經驗為依據的,因此窄帶CDMA向CDMA2000的演進無論從無線還是網絡部分都更為平滑。在基站方面只需更新信道板,并將系統軟件升級,即可將IS-95基站升級為CDMA2000基站。
由此可見,WCDMA和CDMA2000還將長時間在我國共存,鹿死誰手?尚未分曉。
參考文獻:
傳統的標簽防碰撞算法可分為ALOHA算法[2-3]和樹形算法[4-5]2類。ALOHA算法是1種完全隨機接入的多址接入協議算法,比如:PALOHA算法(隨機推遲算法)、時隙ALOHA算法(SA算法)、幀時隙ALOHA算法(FSA算法)、動態幀時隙ALOHA算法(DFSA算法)和分組ALOHA算法等。該類算法在標簽試圖發送數據時,并不考慮信道當前的忙閑狀態,一旦產生數據,就立刻決定將其發送至信道,這種發送控制策略有嚴重的盲目性。隨著用戶數量或發送信息量的增加,這種完全隨機接入的算法將使信道重疊現象加劇,碰撞概率增大,傳輸性能下降。
近幾年,有學者提出了采用CDMA技術進行防碰撞的方法,其性能有明顯改善。文獻[6]提出在標簽識別過程中,使用碼分多址技術,實現一個時隙可以同時傳輸多個標簽。文獻[7]提出了一種基于碼分多址思想的時隙ALOHA算法,來解決射頻識別中的防碰撞問題,此算法的系統穩定范圍要大于時隙ALOHA系統,并且當選用的擴頻碼組階數為N時,此算法的最大吞吐量可達原時隙ALOHA的N倍。上述2個文獻所提到的算法,當標簽數量很多時,數據碰撞的概率明顯增加,使系統的吞吐量急劇下降,影響了系統的整體性能。基于以上原因,本論文提出了1種改進的基于CDMA技術的防碰撞算法,能夠適應大量標簽的識別應用,減少了識別碰撞的發生,使系統吞吐量得到明顯改善。
1基于CDMA技術的新型防碰撞算法
n×1-1Nn-1(2)由于傳統的基于ALOHA的防碰撞算法中一個時隙最多只能正確識別一個標簽的信息,所以當標簽數目過大時,系統的吞吐率,即正確識別標簽數目所占的百分比將會大幅度的降低,所以對于過量的標簽,本算法將會采取對所有標簽進行分組識別,當標簽需要分成2組時(系統識別幀最大時隙數N為256):nN×1-1Nn-1=n2N×1-1Nn2-1 (3)用上述公式可知n=354,所以當標簽數量大于354時,系統將會對標簽分組識別。
本文提出的新型算法如下:依據分組幀時隙ALOHA算法,通過此算法的分組規則,完成識別的所有標簽的分組。分組幀時隙ALOHA算法的分組規則如下:當標簽數量≤354時,無論幀長選擇8個時隙還是256個時隙,標簽都不分組,按照一個大組來進行識別;當標簽數量>354時,幀長選擇256個時隙比較適合讀寫器的識別;當標簽數量在355707時,標簽分為2組;當標簽數量在708~1 416時,標簽分成4組更適合信息的傳輸識別。當標簽數量更多時,按照這個規律分成合適的組數再進行識別,詳細過程如圖1所示。標簽分組工作完成后,在每個分組中分別采用碼分多址技術,利用其技術的保密性、抗干擾性和多址通信能力,對標簽中的數據進行擴頻處理并傳輸。然后讀寫器端利用碼組的自相關特性對不同標簽所發的數據進行解調,從而達到防碰撞的目的,進而完成對全部標簽的識別,也實現了同一時隙可以傳輸多個信息的情況。本論文中提到的新型防碰撞算法需要預先在待識別的標簽中植入擴頻性良好的正交碼組,以防止接收端沒有辦法正確解擴接收,本文選用Walsh序列。該算法可以有效減少圖1算法執行過程示意圖標簽識別過程中的碰撞次數,從而減少了識別時間并且降低了功耗。本論文將分組幀時隙ALOHA算法和碼分多址技術相結合,實現在每個分組內可以有多個標簽同時進行擴頻傳輸,并且在接收端采用并行接收技術進行多個標簽的同時接收。本發明在識別標簽過程中,每個組內均為一個獨立的識別過程,在分組幀長不改變的前提下,提高了標簽數量龐大時的系統性能。有效地減小標簽之間的碰撞概率,縮短讀寫器操作時間,提高吞吐率, 很適合應用于具有較大數量標簽的RFID系統中。
2仿真結果
本論文提出了采用碼分多址技術的新型防碰撞算法,并仿真了固定時隙數下ALOHA算法的系統吞吐率和本文所提出的算法改進后的系統吞吐量。
RFID系統中時隙ALOHA算法的幀長取值從16個時隙到256個時隙變化,根據公式2,系統吞吐率如圖2所示。其中,系統仿真設定的信息幀長F即時隙數設定按2的冪次方遞增,即F取值從16個時隙變化到256個時隙,橫坐標為標簽數N從1變化到500,縱坐標為吞吐率。當幀長設定為256個時隙,標簽數量少于256個時,系統吞吐量隨著標簽數量的增加而增加,直到標簽數量達到256時系統的吞吐量達到最大值。隨著標簽數量的逐漸增多,系統的吞吐量又呈現下降趨勢。從圖2可以得出2點結論:一、當標簽個數接近信息幀長時,系統的吞吐率比較高;二、隨著幀長取值的增加,系統對標簽的識別性能有明顯改善。
本論文提出的基于碼分多址技術的新型防碰撞算法選用Walsh序列碼,其在對標簽的ID號進行擴頻處理后,即可實現在同一時刻有2個以上的標簽同時進入讀寫器的識別區域,它們同時發送各自的ID號后,讀寫器在接收到這些在空間疊加后的信號時也能完整地分離出不同標簽的ID號,突破了時隙ALOHA算法在同一時刻不能有2個以上標簽到達的限制。此時,系統的吞吐量為(Walsh序列的階數為r)esucc=∑t=2rt=1N×P(N,n,t)(4)固定時隙數的ALOHA算法的系統吞吐量仿真圖和其與基于碼分多址技術的新型防碰撞算法的比較仿真結果如圖3所示。仿真條件為標簽的到達情況符合泊松過程。仿真圖3給出了RFID系統的讀寫器閱讀100個標簽的識別結果,其中新型算法選用的是Walsh序列,其階數r取值從2變化到3,固定時隙數的ALOHA算法的信息幀長F取值從32變化到64,橫坐標為標簽數N從1變化到100,縱坐標為吞吐量。從仿真結果看,在同樣的到達率的條件下,階數越大,算法的吞吐量越高,系統的識別性能有明顯改善。并且隨著到達率的增加,新型 算法的吞吐量也隨著增加,當標簽到達量與階數相等時,系統吞吐量達到最大,但到達量大于階數時,吞吐量隨著到達率的增加而呈下降趨勢。這是由于當在同一時隙內到達的標簽數量增加到一定程度后,基于Walsh序列階數r的有限性,選用相同的Walsh序列作為擴頻碼的標簽數量將會增加,此時必然導致碰撞的增加。當選用的Walsh序列階數為3時,基于碼分多址技術的新型防碰撞算法的系統吞吐量可高達3.2,遠高于時隙ALOHA的0.368。而且隨著Walsh序列階數的提高,吞吐量的最大值還可以提高,但這會以增加讀寫器和標簽的硬件復雜度為代價,在實際使用中必須根據需求在吞吐量和Walsh序列階數中作出折中選擇。
3結束語
本論文在標簽的到達情況符合泊松過程的情況下,利用碼分多址技術的多址通信能力,結合分組幀時隙ALOHA算法的優勢,創新地提出了一種RFID系統中基于碼分多址技術的新型防碰撞算法。理論和仿真實驗表明:同已有的標簽防碰撞算法相比,本論文提出的新型算法提高了標簽數量龐大時的系統性能,能有效地減小標簽之間的碰撞概率,縮短讀寫器操作時間,提高吞吐率, 很適合應用于具有較大數量標簽的RFID系統中。
面向未來,人們對3G技術充滿了美好的期待。目前3G還處于起步階段,但其發展前景十分看好。隨著通信網絡和技術的不斷發展,3G技術環境下電信增值業務進入了高速發展,業務范圍持續擴大,經營主體趨向多元,經營模式日益創新的新階段。
一、3G的含義
3G是英文3rdGeneration的縮寫,指第三代移動通信技術。相對第一代模擬制式手機(1G)和第二代GSM、TDMA等數字手機(2G),第三代手機一般的講,是指將無線通信與國際互聯網等多媒體通信結合的新一代移動通信系統。它能夠處理圖像、音樂、視頻流等多種媒體形式,提供包括網頁瀏覽、電話會議、電子商務等多種信息服務。為了提供這種服務,無線網絡必須能夠支持不同的數據傳輸速度,也就是說在室內、室外和行車的環境中能夠分別支持至少2MBps(兆字節/秒)、384KBps(千字節/秒)以及144KBps的傳輸速度。
二、3G技術基本特點
從目前已確立的3G標準分析,其網絡特征主要體現在無線接口技術上。蜂窩移動通信系統的無線技術包括小區復用、多址/雙工方式、應用頻段、調制技術、射頻信道參數、信道編碼及糾錯技術、幀結構、物理信道結構和復用模式等諸多方面??v觀3G無線技術演變,一方面它并非完全拋棄了2G,而是充分借鑒了2G網絡運營經驗,在技術上兼顧了2G的成熟應用技術,另一方面,根據IMT-2000確立的目標,未來3G系統所采用無線技術應具有高頻譜利用率、高業務質量、適應多業務環境,并具有較好的網絡靈活性和全覆蓋能力。3G在無線技術上的創新主要表現在以下幾方面:
(一)采用高頻段頻譜資源
為實現全球漫游目標,按ITU規劃IMT-2000將統一采用2G頻段,可用帶寬高達230MHz,分配給陸地網絡170MHz,衛星網絡60MHz,這網絡為3G容量發展,實現全球多業務環境提供了廣闊的頻譜空間,同時可更好地滿足寬帶業務。
(二)采用寬帶射頻信道,支持高速率業務
充分考慮承載多媒體業務的需要,3G網絡射頻載波信道根據業務要求,可選用5/10/20M等信道帶寬,同時進一步提高了碼片速率,系統抗多徑衰落能力也大大提高。
(三)實現多業務、多速率傳送
在寬帶信道中,可以靈活應用時間復用、碼復用技術,單獨控制每種業務的功率和質量,通過選取不同的擴頻因子,將具有不同QoS要求的各種速率業務映射到寬帶信道上,實現多業務、多速率傳送。
(四)快速功率控制
3G主流技術均在下行信道中采用了快速閉環功率控制技術,用以改善下行傳輸信道性能,這一方面提高了系統抗多徑衰落能力,但另一方面由于多徑信道影響導致擴頻碼分多址用戶間的正交性不理想,增加了系統自干擾的偏差,但總體上快速功率控制的應用對改善系統性能是有好處的。
(五)采用自適應天線及軟件無線電技術
3G基站采用帶有可編程電子相位關系的自適應天線陣列,可以進行發信波束賦形,自適應地調整功率,減小系統自干擾,提高接收靈敏度,增大系統容量,另外軟件無線電技術在基站及終端產品中的應用,對提高系統靈活性、降低成本至關重要。
三、3G的技術標準
國際電信聯盟(ITU)在2000年5月確定W-CDMA、CDMA2000和TDS-CDMA三大主流無線接口標準,寫入3G技術指導性文件《2000年國際移動通訊計劃》(簡稱IMT-2000)。
W-CDMA即Wide-bandCDMA,也稱為CDMADirectSpread,意為寬頻分碼多重存取,其支持者主要是以GSM系統為主的歐洲廠商,這套系統能夠架設在現有的GSM網絡上,對于系統提供商而言可以較輕易地過渡,而GSM系統相當普及的亞洲對這套新技術的接受度預料會相當高。因此W-CDMA具有先天的市場優勢。
CDMA2000也稱為CDMAMulti-Carrier,由美國高通北美公司為主導提出,這套系統是從窄頻CDMAOne數字標準衍生出來的,可以從原有的CDMAOne結構直接升級到3G,日前,中國電信集團公司獲得增加基于CDMA2000技術制式的3G業務經營許可,中國電信在收購了中國聯通CDMA網絡之后,啟動了44個重點城市的網絡優化工程,并于去年年底前完成了340多個城市的CDMA網絡建設工作,滿足了82個無線城市的無線上網需求。中國電信還了“天翼”品牌并啟動了189號段放號。由于之前所采購的設備都支持CDMA2000制式,中國電信不需要重新建設網絡,在3G牌照發放后,只需進行軟件升級,中國電信就會在第一時間里建設起一個全國覆蓋的3G網絡。
TD-SCDMA是由中國大陸獨自制定的3G標準,該標準將智能無線、同步CDMA和軟件無線電等當今國際領先技術融于其中,在頻譜利用率、對業務支持具有靈活性、頻率靈活性及成本等方面的獨特優勢。另外,由于中國內的龐大的市場,該標準受到各大主要電信設備廠商的重視,全球一半以上的設備廠商都宣布可以支持TD-SCDMA標準。新晨
四、3G技術的應用
當前,一些移動流媒體業務已經能夠在2.5G網絡上實現,3G網絡將為移動業務發展提供更有效的支撐。由于3G網絡擁有更高的數據傳輸速率和數據業務支撐能力,3G運營商不僅可以向用戶提供高質量的語音業務,而且還能夠提供高速率的流媒體業務。從全球來看,隨著3G商用進程的加快,日本和韓國以及歐美地區的一些移動運營商已相繼推出了基于移動流媒體技術的視頻業務,移動流媒體業務已成為3G網絡的核心業務和熱點業務。從實際應用的情況來看,移動流媒體可提供點播、直播、下載播放三種業務形式。其中,點播應用主要包括電影片花、精彩片斷、MTV等;直播包括電視節目、視頻監控、重大賽事、音樂現場會等;下載播放比較適合于那些非在線、對音視頻質量要求較高的多媒體節目。
稅源監控系統是稅務機關利用現代信息技術對稅源信息進行全面采集、分析和利用的稅務信息化應用系統。一般由企業端和稅局端組成。安裝在企業的企業端系統功能是用于對企業進行稅源信息監控、采集和數據傳輸;安裝在稅務機關的稅局端系統功能是用于接收所采集的稅源信息,并對信息進行分析和利用。稅源監控系統是稅務機關對重點稅源企業進行實時監管的重要工具,應用先進信息技術提高系統功能,對稅務機關降低稅源監控成本,提高稅源監控實效,從源頭堵塞稅收流失具有重大意義。
一、無線監控技術簡介及3G-EVDO優勢分析
1. 無線監控技術簡介
目前無線監控技術實現上有下面幾種方式:
(1)模擬無線數據收發模塊實現。該類監控數據傳輸距離主要由發射機的發射功率來決定,監控范圍受發射距離的限制,范圍小;數據在空中傳播,易受電磁等干擾,數據可靠性不好;模擬傳輸沒有很好的加密模式,安全性不好;數據傳輸率很低,不能滿足稅源監控要求的從企業原料采購到成品銷售的多個重要環節產生的數據采集及時性、準確性、安全性等要求。
(2)GSM網絡實現。這類監控通信方式是依托全球的GSM網絡,它的最大特點是打破了距離的限制,從而可以實現遠程監控。主要是利用GSM短消息業務或語音業務進行業務監控。語音業務就是利用語音信道進行通信,把各種信息轉化成語音信號計算機論文,通過語音信道發送。缺點是:由于網絡傳輸不穩定,短信中心容量等問題,信息發送不可靠,并且缺乏安全性;消息的發送到接受很多情況會有較大時延,加上內容長度限制和GSM上網速度只能達到9.6kbps,這種網絡環境無法滿足企業稅源實時監控和準確性的要求。
(3)GPRS網絡實現。GPRS是由中國移動推出的2.5G服務,是在現有的GSM系統上發展出來的一種新的分組數據承載業務論文服務。GPRS與GSM語音的根本區別是,GSM的基礎是電路交換,GPRS的基礎是分組交換。因此,GPRS特別適用于突發性的、少量的數據傳輸,也適用于偶爾的大數據量傳輸。和GSM相比的優點是傳輸速度較快,缺點是數據傳輸速度偏低,有跳躍性,只能滿足部分視頻監控的要求。
(4)3G-EVDO即CDMA2000 1x EVDO,是3G系統CDMA2000的演進版本,基于CDMA的集群技術。3G-EVDO系統設計的基本思想是將高速分組數據業務與低速語音及數據業務分離開來,利用單獨載波提供高速分組數據業務,而傳統的語音業務和中低速分組數據業務仍由 CDMA2000 1x系統提供,這樣可以獲得更好的頻譜利用效率,網絡設計也比較靈活,抗干擾能力強、信號穿透能力強、系統容量大。1x EV-DO 于2001 年被ITU-R 接受為3G 技術標準之一。
2. 3G-EVDO技術優勢分析
3G-EVDO是基于CDMA系統的升級,兼容了IS-95系統的空中接口技術,在升級上只需進行軟件方面的升級。而CDMA網絡經過7年多的建設,通信網絡覆蓋全國,基礎設備完善齊全,將會是最快升級到3G網絡的系統。通信過程中不會產生脈沖式射頻,當在周圍各種強電設備密布的情況下,不會給其他電器設備造成射頻破壞。3G-EVDO通信網絡覆蓋全國,并成為成熟和穩定的網絡,為無線局域網絡稅源監控系統提供一個穩定、安全的接入環境。3G-EVDO系統本身網絡的安全性就好,傳輸過程中滿足IP化和多媒體化的需求,系統具備視頻編解碼處理、網絡通信、自動控制等強大功能計算機論文,直接支持網絡視頻傳輸和網絡管理,使得監控范圍達到前所未有的廣度。比較符合以后的發展方向。3G-EVDO可提供高達153.6kps的無線數據通訊帶寬,采用信道資源分配方式,可確?;跓o線局域網絡的稅源監控系統企業信息傳輸的實時性。目前從技術先進性上來看,3G-EVDO是各種無線網絡通訊技術中最新的改良技術,在網絡安全、傳輸、解碼、分配、覆蓋等方面都有著明顯的優勢。
二、3G-EVDO技術在稅源監控中應用的意義
伴隨著網絡技術3G業務應用范圍不斷擴大,基于3G系統的無線局域網絡監控系統將會用到各個領域,3G技術與稅務信息化的結合也是大勢所趨。目前國內有關無線局域網稅源監控系統產品多數為針對2G無線網絡系統進行開發的,由于稅源監控圖像所包含的信息量非常大,而2G通信系統本身又具有帶寬小、抗干擾能力差、衰落嚴重、誤碼率高等特點,稅源監控數據傳輸容易掉包的問題沒有得到很好解決,無法達到實時監控的作用。如何將遠程的監視、系統遙控、監控無線化有機地結合起來,做到既可以基于無線網絡進行遠程的監視、遙控和圖像的傳輸,又具備通常稅源管控的功能,并且投入費用合理,能夠更加有效地確保系統運行穩定,將安全防范技術提高到一個新的水平,是目前稅源監控信息化的應用的最大需求. 開發基于3G-EVDO無線局域網絡的稅源監控系統實現稅源監控管理網絡化、無線化、遠程化具有積極的現實意義,主要體現在以下幾個方面:
1.有利于實施全方位的稅源動態監控
基于3G-EVDO的企業無線局域網絡稅源監控系統,可深入企業生產經營全部環節,進行實時監控、采集企業生產、經營真實信息,實施全方位的稅源動態監控和納稅評估,對提高稅源信息采集質量、加強信息共享和綜合分析利用、查找和堵塞征管漏洞、提高稅源管理實效具有重大意義。
2.有利于解決復雜工業環境下有線網絡稅源監控技術難題
有關稅源監控系統的開發與應用,在國內也已有少量報道,但企業現有的局域網絡都是有線網絡,在工業環境復雜的企業生產環境中有線網絡的應用受到環境的很大限制,存在布局困難、損耗大、傳輸距離短、分布范圍有限、運行成本高的缺陷。無線局域網絡監控系統具有無限的無縫擴展能力,可組成非常復雜的監控網絡。無線網絡監控系統是監控和無線網絡傳輸技術的結合,它可以將不同地點的現場信息實時通過無線通訊手段傳送到無線監控中心。
3.有利于降低稅源監控成本
目前從技術先進性上來看,3G-EVDO是各種無線網絡通訊技術中最新的改良技術,在網絡安全、傳輸、解碼、分配、覆蓋等方面都有著明顯的優勢,具有綜合成本低計算機論文,只需一次性投資,性能穩定可靠,維護費用低,無需專人管理的特點。建立無線局域網絡稅源監控系統,有利于提高稅收行政管理的效率、降低稅源監控成本,解決有線局域網絡下監控中存在的監控點多、傳輸距離遠、覆蓋范圍寬、實時性強、適應復雜的生產環境等技術瓶頸。。
三、基于3G-EVDO的無線局域網絡稅源監控系統設計
1.總體目標
在目前已有的基于有線網絡傳輸的企業稅源監控系統基礎之上,以3G-EVDO集群技術替代現有的有線網絡監控、數據采集與傳輸,設計實現基于3G-EVDO集群技術的無線局域網絡稅源監控系統。相比現有的有線網絡稅源監控系統,系統功能可在以下方面達到提升:
(1)稅源監控范圍擴大?;?G-EVDO集群技術的無線局域網絡稅源監控系統可實施全方位的動態稅源監控,對企業生產經營的采購、生產、庫存到銷售都進行了全方位的動態監控,實現對企業生產經營的全過程的數據信息進行實時采集傳輸和分析利用。使稅務管理部門能夠全面了解企業的實時經營情況,全面掌握稅源信息,減少稅收流失論文服務。
(2)稅源監控能力提高?;?G-EVDO集群技術的無線局域網絡稅源監控系統不再受企業地理位置的限制,適合遠距離傳輸,數字信息抗干擾能力強,不易受傳輸線路信號衰減的影響,能夠進行加密傳輸,可以在數千公里之外實時監控現場。特別是在現場環境惡劣或不便于直接深入現場的情況下,數字視頻監控能達到親臨現場的效果。即使現場遭到破壞,也照樣能在遠處得到現場的真實記錄。
(3)稅源監控實效提升。系統采用3G-EVDO集群技術、視頻壓縮編碼等諸多先進的信息化技術進行信息采集與傳輸,由于對視頻圖像進行了數字化,可以充分利用計算機的快速處理能力,對其進行壓縮、分析、存儲和顯示。通過視頻分析,可以及時發現異常情況并進行聯動報警,從而實現無人值守。提高稅源監控范圍、質量和效率。
2.技術路線與技術關鍵
(1)技術路線:系統從設計到開發采用基于無線局域網絡稅源管理思想,利用3G-EVDO集群技術、視頻壓縮編碼等諸多先進的信息化技術進行數據無線網絡傳輸的新型系統,運用H.264視頻壓縮編碼技術和3G-EVDO無線網絡數據傳輸解決方案,通過建立統一的信息采集機制、統一的數據信息監控機制,構建面向應用監控、預警的信息化系統。采用跨平臺跨數據庫的設計技術、J2EE技術、三層/多層結構技術、3G通訊標準、TCP/IP協議等技術進行分析設計和數據交換標準。
(2)技術關鍵:基于3g-EVDO無線局域網絡技術稅源監控應用研究,提供3G網絡接口實現數據傳輸、共享、分析、預警;網絡帶寬自適應技術,根據網絡帶寬自動調整視頻幀率計算機論文,適應爆發性、大容量數據傳輸;基于無線網絡的點對點、點對多點、多點對多點的遠程實時企業生產經營現場監視;具有面向異構網絡環境的綜合管理能力。
3.技術創新
(1)采用3G-EVDO 、H.264視頻壓縮編碼技術等網絡通訊新技術,實現企業生產經營“購、產、存、銷”關鍵經營環節監控,解決傳統網絡傳輸方式的無法適應監控點多、傳輸距離遠、覆蓋范圍寬、實時性強、適應復雜等網絡稅收監控瓶頸問題,實現實時數據傳輸、接收,保證信息的安全性、穩定性、準確性、及時性;
(2)采用3G-EVDO 、H.264視頻壓縮編碼技術等網絡通訊新技術在企業生產關鍵環節實現實時的稅源信息采集,從源頭控制發票開票信息的不實,通過技術手段對企業真實的經營信息的分析,測算銷售數據,與納稅申報信息比對,實現異常預警。
(3)采用3G-EVDO網絡通訊新技術通過一個系統將多種系統整合在一起,將信息自動化,財務分析,稅源監控功能集于一身,實現對各類稅源信息的傳遞、交流、共享、存儲、協同,實現數據集成及數據的集中展現,做到全方位稅源實時控管,有效解決企業,稅務機關,政府,生產者之間信息不對稱問題。真正實現了監控系統的數字化、網絡化和智能化。
【參考文獻】
[1]尹遜政,路勇.一種基于GPRS技術的遠程監控解決方案[J].計算機應用,2006,Vol.15(5):27-30.
[2]任雷.固定監控與移動無線圖像傳輸技術[J].赤子, Vol.2009(16).
[3]范文博,姚遠,張其善.基于GPRS技術的數據采集遠程網絡監控系統.無線電工程[J],2004,Vol.34(1):21-24.
新的移動通信實驗教學體系,將先修課學習、工業實習、理論課學習、實驗課開展、畢業論文等多個教學環節進行整合,形成從基礎理論仿真到專業實驗操作、工程技術實訓、創新實驗等一個開放的實驗教學體系。
通過通信類先修課程的學習,使學生準備好相關的基礎知識,同時也對移動通信在課程體系中的地位有明確的定位[14,15]。相應編程語言類課程的學習更為實驗仿真提供了良好的基礎。移動通信理論課程的講授為實驗課程的開設提供了直接的理論平臺。工業實習安排在移動通信實驗課開設前一學期開展,實習內容是到各通信運營商公司和設備廠家進行跟崗實習,涉及到的內容有:移動通信系統基站的建設與維護;交換與傳輸系統管理和維護;光纖傳輸設施維護;移動終端制造與維修;3G應用等多個方面。通過工業實習使學生對當前移動通信所涉及到具體問題有了充分的感性認識,這對之后實驗教學的開展,特別是移動網絡方面實訓的進行有很好的促進作用。移動通信實驗教學的開展涵蓋以下幾個方面:基礎理論仿真、專業實驗操作、工程技術實訓、創新實驗、畢業設計?;A理論仿真是利用MATLAB軟件實現:QPSK調制及解調;MSK、GMSK調制及相干解調;QAM調制及解調;OFDM調制解調;m序列產生及特性分析;Gold序列產生及特性分析;數字鎖相環載波恢復;Rake接收機仿真實驗。例如,OFDM調制解調實驗,按照圖2OFDM仿真結構圖,利用MATLAB程序實現圖2中不同測試點處的信號波形。
工程技術實訓階段則是利用3G天線獲取實際信號,利用頻譜分析儀等儀器實現CDMA2000、WCDMA、TD-SCDMA信號的分析。同時實現基站放大器、塔頂放大器性能指標的測試。例如,圖4中給出利用頻譜分析儀所測得實際CDMA2000和WCDMA信號的頻譜特性。
創新實驗階段主要是針對有興趣參加各類設計競賽的學生開展,將全國及各省、校級電子設計大賽題目進行改造,從中選取與移動或無線通信有關,且具有創新性、前瞻性、實用性的方案,經過適當修改作為創新實驗階段的實驗案例。學生可以通過這樣的實驗案例了解各級大賽的要求及特點,教師則也可以在實驗教學過程中,選拔優秀學生參加各級大賽,進而提高學生的能力和水平。畢業設計階段主要是利用實驗室實驗條件,從學院承擔的科研項目中,將某些項目進行簡化、修改、重組,轉化成通信專業類論文題目,或從本專業最新的科技論文中選擇其中合適的內容進行改進,作為通信專業類綜合性畢業設計案例,從而將先進的科研成果打造為優質教學資源,實現基礎與前沿、經典與現代的結合。為通信類專業學生提供了廣闊的選擇空間和開放的培養環境??傊?,移動通信實驗教學體系中基礎理論仿真、專業實驗操作和工程技術實訓是必修課程教學內容,是實驗教學的基礎與根本[16]。創新實驗、畢業設計則是移動通信實驗向之后教學、實踐環節的擴展與延伸。這樣由必修和擴展環節共同構建起移動通信實驗教學開放體系。
本文作者:馮敏羅清龍作者單位:聊城大學
1引言
在油田偏遠油區生產過程中,對相關生產參數及油井視頻進行遠程監控對偏遠油井的安全生產起著至關重要的作用。但由于偏遠油區裝置遠離油田總部,應用有線的通訊方式,施工困難且周期長、靈活性差。而無線通訊方式由于其建立物理鏈路簡單易行,成本低,可以根據現場需求及時調整項目方案,靈活性好,系統的功能擴展方便,因此特別適合偏遠油區對通信鏈路的要求。
2常用的無線通訊技術
目前在油田現場廣泛應用的無線通訊技術主要有GPRS/CDMA、數傳電臺、擴頻微波、無線網橋及衛星通信、短波通信技術等。
其中GPRS和CDMA技術中國移動和中國聯通公司的主營數據傳輸業務,在數據傳輸方面有著很強的優勢,即信號覆蓋范圍廣。對于陸上油田生產區域基本完全覆蓋。但由于海上油田地理位置特殊,遠離陸地的基站,因此很多海上生產平臺還無法為GPRS/CDMA信號完全覆蓋。此外經過測試,GPRS的平均速率為20kbit/s~40kbit/s,CDMA的平均速率為80kbit/s~100kbit/s,可以滿足傳輸小數據量的生產數據要求,但無法滿足大數據量的信號(例如視頻信號)遠程無線傳輸。雖然有利用CDMA技術進行視頻信號傳輸的案例,但效果并不理想。
數字電臺用于點對點或點對多點的工作環境,能夠提供標準RS-232接口,可直接與計算機、RTU、PLC等數據終端連接,實現透明傳輸。數傳電臺的傳輸速率從1200~19.2Kbit,傳輸距離20~50公里。具有抗干擾能力強、接收靈敏度高等特點。數傳電臺技術比較成熟,標準統一,一直以來廣泛用于油田的數據遙測/數據采集與監控(SCADA)項目中。但隨著GPRS/CDMA技術的日漸成熟,相應的設備價格的降低,使得在很多應用場合中數傳電臺被GPRS/CDMA所取代。但同時,數傳電臺的相關技術也在不斷發展,智能化、網絡化、高帶寬的數傳電臺也不斷涌現。結合數傳電臺誤碼率低、信道可靠的特點,數傳電臺必將成為海上油田通信技術應用的可靠選擇。
擴頻微波和無線網橋技術是近幾年興起的一門數據傳輸技術。擴頻微波最大優點在于較強的抗干擾能力,以及保密、多址、組網、抗多徑等,同時具有傳輸距離遠、覆蓋面廣等特點,特別適合野外聯網應用。而無線網橋是無線射頻技術和傳統的有線網橋技術相結合的產物。無線網橋是為使用無線(微波)進行遠距離數據傳輸的點對點網間互聯而設計。它是一種在鏈路層實現LAN互聯的存儲轉發設備,可用于固定數字設備與其他固定數字設備之間的遠距離(可達50km)、高速(可達百Mbps)無線組網。這兩項技術都可以用來傳輸對帶寬要求相當高的視頻監控等大數據量信號傳輸業務。
例如,對于遠離陸地且無法進行中繼的海上平臺,通訊鏈路只能通過衛星通信和短波通訊。其中衛星通信范圍大,只要衛星發射的波束覆蓋進行的范圍均可進行通信。不易受陸地災害影響,建設速度快,易于實現廣播和多址通信等等優點。但其運行費用相對昂貴,且系統維護要求高。短波通訊以往只在軍事通信、專業通信、業余通信中發揮著極為重要的作用,因其傳輸速率低、噪聲大,電離層反射天波為主,通常不能穩定的使用固定頻率工作等缺點,因此在其他領域已慢慢淡出人們的視線。盡管短波通信存在一些缺陷,但對于海上油田而言,短波通訊作為可靠性高、覆蓋區域廣的通信方式,用于海上平臺的緊急通信及小數據量傳輸應該是一個比較好的選擇。
3環境因素對技術應用的影響
偏遠油區的環境因素以以海上油田最為特殊。海上油田除了考慮信道帶寬,傳輸數率,傳輸距離,發射功率,天線要求等通信設備本身的技術參數外,在應用無線通訊技術的過程中,還必須全面地考慮海上平特的地理環境與地理條件對無線通信技術應用的影響。
3.1對信號傳輸的影響
可以通過選取性能好的設備或應用抗干擾措施以減少甚至避免干擾。但無線通信過程中的信號衰落問題則是普遍存在的,而且是不可避免的。由于海上油田遠離陸地,與陸地之間的廣闊的海域、多變的氣候使得在陸上應用效果很好的技術在海上應用時沒有了用武之地。
微波在空間傳播中將受到大氣效應和地面效應的影響,導致接受機接受的電平隨著時間的變化而不斷起伏變化,我們把這種現象稱為衰落。從衰落的物理因素來看,可以分成以下幾類:吸收衰落、雨霧衰落、K型衰落、波導型衰落、閃爍衰落等等。在各種衰落因素中,吸收衰落、雨霧衰落及K型衰落對海上油田的無線通信應用影響較大。
3.2對技術應用的影響
各項通信技術在海上油田應用中還存在的另外一個問題就是其獨特的現場環境。海上平臺一般空間狹小,還要考慮海上多風,平臺最高點一般較低的特點。
首先是對天線安裝的限制。海上微波通信受地形地貌影響,相同的通信距離要求兩端天線的高度更高。對于衛星通信、擴頻微波、短波通信等天線體積較大的應用,由于海上風力較大,抗風性的要求也使得設備在小平臺的安裝變得十分困難。
此外,對于無人值守的平臺,設備必須具有高可靠性、可自動維護、參數遠程設置等功能。而對于衛星通信、短波通信等要求平臺上配備專業管理操作人員進行設備的管理維護,這一特點也為技術的應用帶來一定的限制。
4無線網橋技術在海上平臺視頻監控中的應用
在實際的現場應用中,我們選取了基于5.8G無線網橋設備進行了現場應用測試。測試地點為淺海油井,測試內容為4路視頻監控圖像的傳輸。該系統具體解決方案是利用摩托羅拉Canopy5.8G無線網橋建立通信鏈路。在平臺一側首先通過視頻服務器將模擬視頻信號轉化為可在網絡傳輸的IP數據流,之后由無線網橋將信號傳輸到陸地端。陸地端一側通過無線網橋進行接收后由視頻監控服務器處理后,對視頻信號進行錄像存儲及Web。相關用戶可依據相應權限在局域網內進行視頻圖像的瀏覽、錄像等操作。
從2001年6月信息產業部將第三代移動通信(簡稱3G)正式提上議程開始,3G進軍中國的腳步在各種傳言和猜測中走過了近8個年頭之后,終于在今年初工信部為國內三大運營商頒發了包括TD-SCDMA、WCDMA、CDMA2000在內的第三代移動通信牌照,但同屬3G標準的WiMAX并未獲準運營。中國電信集團公司科技委主任韋樂平韋樂平指出,移動WiMAX定位的是3G的標準,卻擁有了3.5G+的性能,采用的卻是4G的核心技術,所以其位置比較尷尬??梢哉f,把WiMAX作為3G或者3.5G已經為時已晚,而作為3.9G或者4G又來的太早。那么在技術飛速發展的今天,WiMAX是否已成昨日黃花呢?
1、 WiMAX優越的技術特征
WiMAX(又稱IEEE 802.16標準)是一項基于標準的技術,主要用在城市型局域網路。由WiMAX論壇提出并于2001年6月成形。它可提供最后一公里無線寬帶接入,作為電纜和DSL之外的選擇。根據是否支持移動特性,IEEE 802.16標準可以分為固定寬帶無線接入空中接口標準和移動寬帶無線接入空中接口標準,其中802.16a、802.16d屬于固定無線接入空中接口標準,而802.16e屬于移動寬帶無線接入空中接口標準。
(1)實現更遠的傳輸距離:WiMAX所能實現的50km的無線信號傳輸距離是無線局域網所不能比擬的,網絡覆蓋面積是3G發射塔的10倍,只要少數基站建設就能實現全城覆蓋,這樣就使得無線網絡應用的范圍大大擴展。
(2)提供更高速的寬帶接入。據悉,WiMAX所能提供的最高接入速度是70Mbit/s,這個速度是3G所能提供的寬帶速度的30倍。
(3)提供優良的最后一公里網絡接入服務。作為一種無線城域網技術,它可以將Wi-Fi連接到互聯網,也可作為DSL等有線接入方式的無線擴展,實現最后一公里的寬帶接入。用戶無需線纜即可與基站建立寬帶連接。
(4)提供多媒體通信服務。由于WiMAX較Wi-Fi具有更好的可擴展性和安全性,從而能夠實現電信級的多媒體通信服務。
(5)優越的移動性。WiMAX可以再100Km/h的速度下使用,而WIFI則不行,3G則會嚴重影響連接速度,所以WiMAX在移動中的優勢更加明顯。
2、WiMAX的星星之火
盡管WiMAX有比其他3G標準更為出眾的技術優勢,但隨著國內3G牌照的正式,WiMAX在中國的發展陷入低迷。
早在08年10月工信部無線電管理局副局長謝飛波曾明確了我國對移動WiMAX(802.16e)技術的態度。他表示移動WiMAX(802.16e)尚未通過中國通信標準委員會審定,“因此不能作為中國的國家標準,不能在中國使用?!睂嶋H上,中國從一開始便對移動WiMAX(802.16e)持反對態度,認為移動WiMAX(802.16e)好幾個技術問題一直沒有得到解決,所以不能通過一個技術問題沒有完全澄清的標準。其中最主要的就是移動WiMAX(802.16e)在頻段上與國家正在大力推廣的TD標準有沖突。如果在國內使用移動WiMAX(802.16e),將給本來就頻段資源緊張的TD造成沖擊,這顯然是工信部不愿意看到的局面。
今年1月工業和信息化部正式發放了TD-SCDMA、WCDMA和CDMA2000三張3G牌照后,國內三大運營商開始大力推廣不同制式的3G業務,而不在牌照之列的WiMAX就已經很少被人提及了。同時中國電信董事長兼CEO王曉初在收購CDMA業務會表示,CDMA網絡的演進路線首先考慮在中心城市升級EV-DO Rev.A,并等待LTE的發展。 這是中國電信高層首次公開明確全球第三大CDMA網絡的技術走向:C網將會向3G EV-DO升級,并且在后3G制式上選擇LTE。
WiMAX在國內似乎已無路可走,但今年7月、8月WiMAX的好消息陸續傳來,
在國內繼今年4月我國臺灣地區開通 WiMAX服務之后,最近又有消息稱,大陸將引入臺灣地區電信運營商的WiMAX試驗網,由工信部與地方政府共同選擇兩三個城市來進行試點,此項工作有望在8月底展開。另外還有消息稱,國家廣電總局將在30個城市展開WiMAX的網絡建設。
在國外,美國政府設立總額為40億美元的寬帶刺激基金,可能會幫助目前的WIMAX產業鏈走出困境;華為CDMA和WiMAX產品線總裁趙明接受路透專訪時表示,WiMAX于去年啟動,并將在城市人口較多、但固定線路網絡基礎較差的新興市場獲持續快速發展。同時趙明表示:“今年(WiMAX全球銷量)在5億美元左右,明年應該能到約10億美元。”;世界知名市場調查公司InfoneticsResearch的最新報告指出在用戶對帶寬和VoIP需求的推動下,印度、俄羅斯、巴西等國WiMAX增勢強勁。報告還評測了全球各地的WiMAX發展趨勢。同時報告指出,在中國雖然目前市場很有限,但如果自主的3G技術TD-SCDMA未能點燃市場,監管部門對WiMAX的態度可能將會軟化,從而引導更廣泛的WiMAX市場增長。同時WiMAX論壇主席RonResnick 宣布“2009全球WiMAX高峰會議”將于2009年10月22日-23日在北京舉行。
InfoneticsResearch公司WiMAX、微波業務和移動設備類主管分析師理查德·韋伯(RichardWebb)表示,第二季度已經顯示出WiMAX市場已經越過了谷底。WiMAX自08年開始至今的低谷期已越過,星星之火終于點燃。
3、WiMAX的規?;逃弥皇菚r間問題
據中國通信網報道,中國臺灣工業技術研究院(ITRI)信息與通信研究實驗室(ICL)副總裁兼總監Paul Lin透露,內地將對WiMAX設備以及CPE產品解禁,國家廣電總局將在30個城市展開WiMAX的網絡建設。 WiMAX的解禁不再是空穴來風。
WiMAX的應用是多種多樣的,無線、寬帶、公共安全的這些應用在中國主要取決于頻率的資源,2.5GHz、3.5GHz、700MHz都有不同的應用。WiMAX目前應用主要是作為無線寬帶接入領域的一個很好的補充。而由于其低廉的寬帶費用較為適合中國農村地區的寬帶市場。
1 前言
現行UHF RFID空中接口的最大瓶頸是單信道接入,以致碰撞仲裁成為通信協議的核心。防碰撞算法幾經改進,始終沒有根本突破,多讀寫器密集配置更添讀寫器碰撞麻煩。徹底突破UHF RFlD空中接口接入能力瓶頸的思路唯有多信道接入,即接入網接入,唯一可能的技術途徑是在UHF RFID空中接口引入碼分接入。
直接序列擴展頻譜(DSSS),提供了一種提高信號抗干擾能力的技術手段。正交序列編碼調制,奠定了碼分接入技術基礎,其多信道共用載波、無需頻道選擇的特點更加適合于無源標簽UHF RFID空中接口的應用環境。
對此有兩種不同的認識:一種認為當今的直接序列擴展頻譜和碼分接入系統對于RFID空中接口而言,“復雜”、“困難”和“不可能”。另一種是探索適合于UHF RFID空中接口特定環境,尋找與移動通信不同的技術實現方法,力求實現UHF RFID應用條件下的碼分接入。
2 UHF RFlD空中接口單信道接入體制
這是無可奈何的選擇:
(1)受限于無源標簽的工藝條件。無源標簽不具備頻道選擇能力,不可能采用頻分接入(FDMA)實現多用戶接人。
(2)受限于無源標簽的功耗條件。芯片的功耗與工作頻率的平方成正比,時分接入(TDMA)的系統總速率等于各時分信道速率之和,無源標簽不可能靠增大總工作速率來提高接入能力。Aloha算法和二叉樹算法及其改進算法,本質上都屬于時分接入,與移動通信不同點在于移動通信TDMA信道總速率等于用戶速率與接入用戶數的乘積,單信道射頻識別信道速率保持單用戶速率不變。
(3)受限于無源標簽的復雜度。碼分接入被認為“復雜”、“困難”和“不可能”,詳見第4節。
3 ISO/IECl 8000標準的期待
ISO/IECl8000第一部分給出了ISO/IEC18000的一系列定義,包括DSSS占用信道帶寬、擴展頻譜序列、chip率、chip率精度等參數。在每一冊分標準的協議參數部分,凡讀寫器到標簽鏈路和標簽到讀寫器鏈路參數表格中都留下了擴展頻譜序列、chip率、chip率精度等條目,在子條款中則加注“不用”。甚至在135kHz以下的ISO/lECl8000-2和13 56MHz頻段的ISO/lECl8000-3中也如法炮制,在相應章節保留條目,加注“不用”。
如此安排說明,標準編制者十分看重擴展頻譜技術,為今后條件成熟時加入相關內容留足空間,而且歷經十余年始終不舍棄,可見標準制定者期待之甚。
然而,CDMA不只是擴展頻譜,擴展頻譜技術本身只是做了把頻譜資源轉換為功率資源的工作,也就是改善了接收端信號接收能力。更重要的還需要再把獲得的功率資源轉化為系統工作能力,如移動通信所做的實現正交多信道接入,甚至碼分組網。就這個層面而言,只預留擴展頻譜參數尚顯不夠。
4 望而卻步者所說
CDMA技術因其在移動通信中的成功應用,而使RFlD業界深受誘惑;同時又因其在移動通信中實現方案的復雜度,而令RFID業界望而生畏。望而卻步者斷定:在RFID空中接口引入CDMA技術,
復雜――在于cDMA系統通信組織中,多個邏輯信道,多種實體代碼,所用多種序列的產生和相關檢測,以及嚴格的系統同步需求;
困難――在于RFID的用戶端設備是電子標簽(以下簡稱“標簽”),要求低成本、無源(接收讀寫器射頻能量對標簽供電);
不可能――無源標簽只限于CMOS集成電路工藝,相當于直接序列擴展頻譜系統,終端功能不可能在標簽上實現。
5 努力追尋者所做
2009年波蘭學者Gustaw Mazu rek發表了《應用擴展頻譜發送的有源RFID系統》一文,文中給出了有源RFID空中接口的應用擴展頻譜技術的計算機仿真結果。其特點是標簽由電池供電,只發不收,使用16個127位GoId序列,實現有源標簽碼分多信道發射。其之所以針對有源標簽,說明功耗問題沒法解決;其之所以只發不收,是因為找不到適合于標簽(甚至是有源標簽)上實現的擴展頻譜信號相干接收解擴方案;其之所以只做了仿真,說明這僅僅是一個關鍵課題,還沒有形成完整的系統設計。
當然這項研究也說明,國外也在探索UHF RFlD空中接口新體制,包括RFlD空中接口引入CDMA技術。
臺灣大學劉馨勤等曾使用霍夫曼(Huffman)序列作為RFID碼分接入擴展頻譜序列,但其異步互相關值較大,影響系統性能。
元智大學郭芷琮以相互正交格雷互補序列集合為RFID擴展頻譜序列,以碼分接入的方法處理RFID系統標簽信號異步時碰撞的問題。若兩標簽使用不同的相互正交格雷互補集合擴展頻譜,無論各標簽間接收信號是否同步,相互都不會有任何干擾。若兩標簽使用同一組相互正交格雷互補集合擴展頻譜,只要兩標簽傳送的碼元擴展頻譜序列到達讀寫器時間不同,也可在沒有相互干擾的情況下讀取各標簽傳送資料,模擬結果比文獻中使用霍夫曼序列的性能更好。但是正交格雷互補序列數不足,可能成為擴大系統功能的障礙。
本人從系統的角度出發,改變傳統的雷達模型思維,以通信思維指導系統設計,從分析UHF RFID應用環境入手,通過合適的序列選擇,利用移位m序列族內在關聯特性處理多標簽并行應答,采用多讀寫器正交碼分組網方法,完成了系統架構和關鍵技術方案(見該系列后續論文),預期可適應物聯網發展的需求。