時間:2023-03-02 15:07:24
序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇裂縫控制論文范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!
一、前言
鋼筋砼結構出現裂縫是不可避免的,在保證結構安全和耐久性的前提下,裂縫是人們可接受的材料特征。近十多年來,隨著鋼筋砼結構的長大化和復雜化,以及商品砼的大量推廣和砼強度等級的提高,結構裂縫出現機率大大增加,有些已危及結構的安全性和耐久性,有的地下工程裂滲已影響其使用功能。建設部對此十分重視,召開多次學術研討會,工程界各方專家提出許多技術措施,認為控制裂縫是個系統工程。針對地下工程裂滲比較普遍的現象,我國研制許多新型防水材料,建設部提出今后主要開發應用環保型的中、高檔防水材料,剛柔結合,全面提高我國防水工程的質量和耐久性。
本人根據長期的科學研究和大量工程實踐,提出鋼筋砼結構裂縫控制和防水一些新技術,供工程界參考,不妥之處請指正。
二、結構裂縫產生的原因
結構裂縫產生的原因很復雜,根據國內外的調查資料,引起裂縫有兩大類原因,一種由外荷載(如靜、動荷載)的直接應力和結構次應力引起的裂縫,其機率約20%;一種是結構因溫度、膨脹、收縮、徐變和不均勻沉降等因素由變形變化引起的裂縫,其機率約80%。裂縫發生與材料、設計、施工和維護有關,現作以下分析。
(一)材料缺陷
在變形裂縫中收縮裂縫占有80%的比例,從砼的性質來說大概有:
1.干燥收縮
研究表明,水泥加水后變成水泥硬化體,其絕對體積減小。每100克水泥水化后的化學減縮值為7~9ml,如砼水泥用量為350kg/m3,則形成孔縫體積約25~30L/m3之巨。這是砼抗拉強度低和極限拉伸變形小的根本原因。研究表明,每100克水泥漿體可蒸發水約6ml,如砼水泥用量為350kg/m3,當砼在干燥條件下,則蒸發水量達21L/m3。毛細孔縫中水逸出產生毛細壓力,使砼產生“毛細收縮”。由此引起水泥砂漿的干縮值為0.1~0.2%;砼的干縮值為0.04~0.06%。而砼的極限拉伸值只有0.01~0.02%,故易引起干縮裂縫。
2.溫差收縮
水泥水化是個放熱過程,其水化熱為165~250焦爾/克,隨砼水泥用量提高,其絕熱溫升可達50~80℃。研究表明,當砼內外溫差10℃時,產生的冷縮值εc=T/α=10/110-5=0.01%,如溫差為20~30℃時,其冷縮值為0.02~0.03%,當其大于砼的極限拉伸值時,則引起結構開裂。
3.塑性收縮
砼初凝之前出現泌水和水份急劇蒸發,引起失水收縮,此時骨料與水泥之間也產生不均勻的沉縮變形,它發生在砼終凝之前的塑性階段,故稱為塑性收縮。其收縮量可達1%左右。在砼表面上,特別在抹壓不及時和養護不良的部位出現龜裂,寬度達1~2mm,屬表面裂縫。水灰比過大,水泥用量大,外加劑保水性差,粗骨料少,振搗不良,環境溫度高,表面失水大等都能導致砼塑性收縮而發生表面開裂現象。
4.自生收縮
密封的砼內部相對濕度隨水泥水化的進展而降低,稱為自干燥。自干燥造成毛細孔中的水分不飽和而產生負壓,因而引起砼的自生收縮。高水灰比的普通砼(OPC)由于毛細孔隙中貯存大量水分,自干燥引起的收縮壓力較小,所以自生收縮值較低而不被注意。但是,低水灰比的高性能砼(HPC)則不同,早期強度較高的發展率會使自由水消耗較快,以至使孔體系中的相對濕度低于80%。而HPC結構致密,外界水泥很難滲入補充,在這種條件下開始產生自干收縮。研究表明,齡期2個月水膠比為0.4的HPC,自干收縮率為0.01%,水膠比為0.3的HPC,自干收縮率為0.02%。HPC的總收縮中干縮和自收縮幾乎相等,水膠比越小自收縮所占比例越大。由此可知,HPC的收縮性與OPC完全不同,OPC以干縮為主,而HPC以自干收縮為主。問題的要害是:HPC自收縮過程開始于水化速率處于階段的頭幾天,濕度梯度首先引發表面裂縫,隨后引發內部微裂縫,若砼變形受到約束,則進一步產生收縮裂縫。這是高標號砼容易開裂的主要原因之一。
5.減水劑的影響
人們發現,自八十年代中期推廣商品(泵送)砼以來,結構裂縫普遍增多,這是為什么呢?除了與砼的水泥用量和砂率提高有關外,人們忽視了減水劑引起的負面影響。例如過去干硬性及預制砼的收縮變形約為4~6×10-4,而現在泵送砼收縮變形約為6~8×10-4,使得砼裂縫控制的技術難度大大增加。研究表明,在砼配合比相同情況下,摻入減水劑的坍落度可增加100~150mm,但是它與基準砼的收縮值相比,卻增加120~130%(見圖1)。所以,在《砼減水劑》規范GB138076-97中規定摻減水劑的砼與基準砼的收縮比≤135%。研究表明,摻入不同類型的減水劑砼的收縮比是不相同的,一般是:木鈣減水劑>萘磺酸鹽減水劑>三聚氰胺減水劑>氨基磺酸減水劑>聚丙烯酸減水劑。這說明商品砼澆筑的結構開裂機率大與減水劑帶來負面影響有關。其機理尚不清楚。
以上是從水泥砼物理化學特性分析其各種收縮現象,早期塑性收縮會導致結構出現表面裂縫,砼進入硬化階段后,砼水化熱使結構產生溫差收縮和干燥收縮(包括自干收縮),這是誘發裂縫的主要原因。近十年大量使用商品砼開裂增加,除與單方砼水泥和摻合料用量增加外,減水劑增加砼收縮值變形的負面影響也是一個重要因素。
6.砼后期膨脹出現裂縫,主要是:
(1)水泥中游離CaO過高,Ca(OH)2體積膨脹所致;
(2)水泥中MgO過高,Mg(OH)2體積膨脹所致;
(3)水泥和外加劑堿含量過高,與集料中活性硅等發生堿-集料反應所致;
(4)有害離子Cl-、SO4=、Mg++等侵入砼內部,導致鋼筋銹蝕或形成二次鈣礬石膨脹破壞所致。
7.結構物在任意內應力作用下,除瞬間彈性變形外,其變形值隨時間的延長而增加的現象稱為徐變變形。砼拉徐變時對抗裂有利,一般可以提高鋼筋砼極限拉伸值50%左右。而砼壓徐變很小,一般把收縮變形與徐變變形的計算一并加以考慮。砼收縮經驗公式很多,但是,實際工程所處條件變化較多。一般采用如下任意時間砼收縮計算公式。
εy(t)=3.2410-4(1-e-0.01t)M1.M2……Mn
式中M1.M2……Mn-為水泥品種、骨料,水灰比、溫度、養護和不同配筋率等修正系數。
其中不同配筋率的修正系數見表1。也即限制收縮與自由收縮之比,隨配筋率提高而減小。
表1
配筋率(%)0.000.150.200.250.300.400.50
修正系數M1.000.680.610.550.500.430.40
(二)設計問題
鋼筋砼結構是由砼和鋼筋共同承擔極限狀態的承載力,結構設計師根據地基情況,靜、動荷載、環境因素、結構耐久性等控制荷載裂縫。這里不作討論。從國內外有關規范可知,對結構變形作用引起的裂縫問題,客觀上存在兩類學派:
第一類,設計規范規定很靈活,沒有驗算裂縫的明確規定,設計方法留給設計人員自由處理?;旧喜扇 傲蚜司投?、堵不住就排”的實際處理手法。
第二類,設計規范有明確規定,對于荷載裂縫有計算公式并有嚴格的允許寬度限制。對于變形裂縫沒有計算規定,只按規范留伸縮縫,即留縫就不裂的設計原則。
大量工程實踐證明,留縫與否,并不是決定結構變形開裂與否的唯一條件,留縫不一定不裂,不留縫不一定裂,是否開裂與許多因素有關。我們認為,控制裂縫應該防患于未然,首先盡量預防有害裂縫,重點在防。我國結構工程向長大化、復雜化發展,砼設計強度等級向C40~C60發展,設計師多注重結構安全,而對變形裂縫控制考慮不周,這也是結構裂縫發生增多的原因之一。
(三)施工管理問題
砼配合比設計是否科學合理,水泥與外加劑是否相適應,砂石級配及其含泥量是否符合規范要求,砼坍落度控制是否合理,這些都影響到砼的質量及其收縮變形。
砼澆筑震搗不均勻密實,施工縫和細部處理馬虎,會帶來結構開裂的后患;過震則使浮漿過厚,抹壓又不及時,則砼表面出現塑性裂縫,十分難看。
邊墻拆摸板過早(1~3d),砼水化熱正處于高峰,內外溫差最大;砼易“感冒”開裂。
砼養護十分重要,但許多施工單位忽視這一環節,尤其是墻體和柱梁的保溫保濕養護不到位,容易產生收縮裂縫。某些露天構筑物盡管當地濕度很大,但由于吹風影響,加速了砼水分蒸發速度,亦即增加干縮速度,容易引起早期表面裂縫,風速對水分蒸發速度的影響見表2。這也許是夏季比秋冬季,南方比北方出現結構裂縫較多的原因。
從已建工程調查中發現,底板養護較好,出現裂縫概率較低,而底板上外墻裂縫概率很高約占80%,這與保溫保濕養護不足有很大關系。
除上述技術因素外,施工管理不嚴,趕進度,偷工減料,工人素質差,施工馬虎等也是造成結構裂縫的人為因素。
(四)對維護缺乏認識
我們發現不少結構是在澆筑完3~6個月,甚至在1~2年內出現裂縫。除荷載問題外,主要是環境溫度和風速引起的收縮變形所致。有些地下室不及時復土;上部結構不及時做好封閉;出入口長期敞開,屋面防水層破壞不及時修補等。這些與施工和業主對結構維護缺乏認識有關。鋼筋砼結構與其他物件一樣都存在“熱脹冷縮”的特征,尤其超長結構更為明顯,所以,應重視已澆結構的保溫保濕維護工作。
三、有害裂縫與無害裂縫
裂縫按其形狀分為表面的、貫穿的、縱向的和橫向的等等。裂縫形狀與結構受力狀態有直接關系。裂縫分為愈合、閉合、運動、穩定的及不穩定的等。例如寬度0.1~0.2mm裂縫,開始有些滲漏,水通過裂縫同水泥結合,形成氫氧化鈣和C-S-H凝膠,經一段時間裂縫自愈不滲了。有的裂縫在壓應力作用下閉合了。有的裂縫在周期性溫差和周期性反復荷載作用下產生周期性的擴展和閉合,稱為裂縫的運動,但這是穩定的運動。有些裂縫產生不穩定的擴展,視其擴展部位,應考慮加固措施。
根據國內外設計規范及有關試驗資料,砼最大裂縫寬度的控制標準大致如下:
無侵蝕介質無防滲要求,0.3~0.4mm。
輕微侵蝕,無防滲要求,0.2~0.3mm。
嚴重侵蝕,有防滲要求,0.1~0.2mm。
近年來地下空間的開發利用逐漸普遍,由于功能要求,地下室往往面積大,體量大,超過設置伸縮縫的最小間距。地下室砼因裂縫導致滲漏水的現象非常嚴重,有的甚至影響到建筑物的使用功能和安全。
一、開裂情況:
地下室側壁開裂的情況比較多,裂縫寬度小于0.5mm、間距1—4m、長度有的貫通墻壁全高,側壁兩端附近裂縫較少,中部附近較多。
裂縫往往在砼澆筑的60天之內出現,隨著時間的推移裂縫數量增多,部分裂縫加寬。尤其是在進入冬季氣溫驟變的時候。
二、裂縫原因分析:
1、直接原因:
砼結構裂縫產生的原因比較復雜,概括起來有兩類原因,一種由外荷載引起的,因結構承載力不足而發生變形,另一種是結構因溫差,收縮徐變,不均勻沉降等因素引起。據統計,在工程實踐中,由后者(變形荷載)引起的裂縫約占80-85%,地下室砼裂縫大多數屬于后者。
砼在澆筑后,由于水泥的水化作用,釋放大量的水化熱,因為砼構件表面與構件截面中部溫差超過25℃就引起砼內部裂縫,構件表面溫度和周圍空氣溫差超過25℃,就引起構件表面裂縫。砼澆筑后溫度提高,砼初期體積有微膨脹作用,以后溫度下降體積急劇收縮。砼除了溫度收縮外,還有較大的化學收縮和干燥收縮,砼早期(10天-15天)極限拉伸很低,這造成砼的早期裂縫。因砼的收縮,較高的彈性模量和早期低徐變,會使砼內部產生較大的拉應力,超過砼的極限拉伸,則是造成砼后期裂縫的主要原因。
砼在澆筑一個月左右,完成收縮40%。60天內完成收縮65%,20年后完砼收縮的98%。砼的收縮變形是一個初期大,以后逐漸減少的過程。
2、間接原因:
邊界條件如地基和側面土對砼構件的變形約束作用,砼構件的剛度差異,使砼變形不協調。
側壁砼澆搗時地板剛度大,受到地板的剛度約束,早期形成壓應力,后期砼溫度下降,產生拉應力,當拉應力大于鋼筋的抗拉強度時則出現裂縫。
砼變形與限制膨脹條件有關。當氣溫上升時,地板和底板砼因為溫度升高而向外膨脹,側壁和地板相互約束,在側壁的外側形成垂直裂縫,當地板和頂板受冷收縮時,側壁內側形成垂直裂縫。由于側壁在邊角部分受到的變形量比中部大,同時縱橫側壁的相互約束,因而側壁兩端附近裂縫小,中部附近裂縫多。
側壁內有柱時,由于截面突變,剛度有差異,側壁的變形受到柱的約束,往往產生應力集中,在離柱子1∽2m的墻體上易出現縱向收縮裂縫。
三、控制裂縫的措施
根據《砼規》,現澆鋼筋砼地下室墻壁最大間距為20m(室外)、30m(室內或土中),而又同時說明了對下列情況,如有充分依據和可靠措施,伸縮縫最大間距可適當加大;
①砼澆筑采用后澆帶分段施工。
②采用專門的預應力措施。
③采取能減少砼溫度變化或砼收縮的措施。
當增大伸縮縫間距時,尚應考慮溫度變化和砼收縮對結構的影響。
伸縮縫雖然是根本解決砼收縮裂縫的措施,也有許多缺點,主要是造價高,地下室不能連成整體,影響功能,伸縮縫的防水處理比較麻煩,防水效果并不理想,同時近幾年來超長砼結構的無縫設計與施工技術不斷實踐與發展,且有許多成功的工程應用,取得良好的效益。
采取的主要措施有以下這點:
1、補償收縮砼
即在砼中滲入UEA、HEA等微膨脹劑。例如用UEA膨脹劑,以10~20%等量取代水泥,拌制成補償收縮砼,其限制膨脹率ξ2=0.02~0.05%,按公式α=µESξ2,可在砼中建立0.2~0.7MPa的預壓應力,從而抵制砼在硬化過程中全部或大部分拉應力,以砼的膨脹值減去砼的最終收縮值的差值大于或等于砼的極限拉伸即可控制裂縫:ξ2–Sm≧ξp,使砼結構不裂。
2、膨脹帶
由于砼中膨脹劑的膨脹變形不會與砼的早期收縮變形完全補償,為了實現砼連續澆注無縫施工而設置的補償收縮砼帶,根據一些工程實踐,一般超過60m設置膨脹加強帶。
膨脹帶要求設置在砼收縮應力發生最大部位,一般地板和側墻長度方向的中間位置。對于超過普通砼伸縮縫設置間距的超長砼結構,要進行連續無縫施工可設置多條膨脹加強帶。
作用:①膨脹加強帶砼的設計強度常比相鄰的砼設計強度提高5MPa-10MPa,從而提高膨脹加強帶砼的抗拉強度,防止砼在此部位開裂。
②膨脹帶內砼的膨脹劑應比帶外其它砼摻量高一點,產生較大膨脹,而兩側砼的膨脹率較小,形成中部大兩邊小的膨脹區,從而補償相應的收縮曲線,使任意長度可以不設伸縮縫。
做法:膨脹加強帶寬2-3m,帶的兩側布置中5mm的密孔鋼絲網,將帶內砼和帶外砼分開,為的是不讓砼中石子通過,鋼絲網垂直布置在上下層(或內外層)鋼筋之間,網兩端分別綁扎在鋼筋上。
膨脹帶內增設10%水平溫度加強鋼筋。與膨脹帶方向垂直布置,兩端伸出膨脹帶2m各與上下層(內外層)鋼筋固定,配筋直徑減小,間距加密。
由于設置膨脹帶主要是為了避免砼早期收縮變形,故膨脹帶的保留時間可為10—15天,這比傳統后澆帶縮短30天的工期。滿足工程連續無縫設計施工的要求。
3、后澆帶
后澆帶作為膨脹加強帶一樣作為砼早期短時期釋放約
束力的一種技術措施,較長久性變形縫已有很大的改進并廣泛任用。
根據文獻②:結構長度是影響溫度應力的因素之一,但只在一方范圍對溫度收縮應力較為顯著,因此設置后澆帶是“先放后抗、以放為主”的主要技術措施。
后澆帶的設計做法也各不相同。尤其是帶內鋼筋是否斷開,有的不但鋼筋連續,還做加強筋連接。帶的寬度具體多少為宜各不相同,筆者認為:
①盡量減少穿越后澆帶鋼筋的總量,以盡可能釋放砼的收縮應力。對于樓板內鋼筋和側壁,由于焊接或搭接施工比較方便均應作斷開處理。由于梁鋼筋連接焊接等施工比較困難,可以留一部分連續鋼筋,盡量切斷梁腹縱向鋼筋和梁頂縱筋截斷,保留梁底鋼筋連續貫通。
②后澆帶寬度內鋼筋抗拉剛度EAs遠比后澆帶兩側砼的抗拉剛度EA小,拉伸變形將主要由后澆帶寬度范圍內的鋼筋提供,對于鋼筋全部截斷的后澆帶,理論上寬度僅有100mm就可以了,為施工方便常取800-1000mm,但對于鋼筋連續的后澆帶,盡可能增大后澆帶的寬度。
③后澆帶保留時間為42~60d,一般為60d,這樣早期溫差和砼收縮完成30—50%。
④材料:用高一等級的微膨脹砼封閉,并進行不少于15d的砼養護。
⑤位置:設在梁墻內力較小位置,后澆帶間距為30~40m。后澆帶可做成企口式,在澆砼前,必須鑿毛清理干凈。
4、提高鋼筋砼的抗拉能力
砼的抗裂能力取決于砼的極限拉伸值,根據有關資料:混凝土的極限拉伸值與配筋有關。固此,砼應考慮增加抗變形鋼筋,即增強對砼由于長期干縮和氣溫度化引起的熱脹冷縮的抗變形能力。對于側壁,增加水平溫度筋,在砼面層起強化作用。選擇冷軋帶肋鋼筋,冷軋扭鋼筋,明顯增強砼的抗裂能力。
在墻柱連接處設水平附加筋,附加筋的長度為1500∽2000mm,配筋率提高10%∽15%。
鋼筋在保持總面積不變的情況下,根據直經小,鋼筋布置間距密的方式選擇鋼筋,能減少裂縫的最大寬度。同時也要考慮砼易于振搗密實。
《砼規》規定:地下室等與土體直接接觸的砼構件最大裂縫寬度充許值為0.2mm。當裂縫寬度為0.1~0.2mm,水進入砼與水泥產生反應,砼具有自愈能力。裂縫若控制在0.1mm以內時,則所配鋼筋數量增多而不經濟。
側壁受底板和頂板的約束,砼脹縮不一致,可在墻體中部設一道水平暗梁抵抗拉力,水平構造筋放在豎筋的外側,有利于控制墻體裂縫的發生。
5、施工措施
①優化砼配合比設計:通過試驗優選合適的外加劑和摻合料,適當降低水灰比和減少水泥用量,選用水化熱低的礦渣硅酸鹽水泥,選用優質粉煤灰,砂和石含泥量要小,級配良好。
②砼應嚴格振搗密實,提高砼密實度。
③落實好砼澆筑后的養護措施,盡量做好保濕保溫養護,既可使砼初期獲得更高的強度,還可減少砼的溫度應力與收縮應力,養護時間在14d以上。
④降低室外溫差的影響。夏季施工時應盡量避免在烈日下澆筑樓板砼。降低砼的入模溫度。地板墊層上干鋪油氈作滑動層。地下室四周土要及時回填,且應分層夯實,既加強地下室頂板作為上部結構的嵌固部位,又可盡快避免室外溫度變化對側壁的影響。
四、工程實例
廣州某住宅小區,地上為10棟6層的住宅,地下由一層地下室連成一個整體,長度150m,寬度95m,相當于大底盤多塔樓結構。
地下室未設伸縮縫,為了有效克服砼的收縮裂縫,在地下室鋼筋砼結構中摻10%的HEA膨脹劑(內摻量),做成補償收縮砼。
長邊方向設3條后澆帶,寬度方向設2條后澆帶,后澆帶沿住宅之間的道路位置,地下室底板、頂板和側壁貫通設置。梁鋼筋連續,板和側壁鋼筋斷開,后澆帶做成彎折線形,避免鋼筋在一條直線上斷開,保留時間為60天,封閉前把鋼筋焊接。后澆帶寬度為1.0m。為保險起見,預先在底板和側壁后澆帶設置止水帶和多道外防水以加強防水。
頂板在室外道路部分,覆土1米厚,既可鋪設設備管道,也作為頂板的保溫隔熱層。底板采用厚板形式,雙層雙向配筋。側壁厚300,C30砼,適當加強了側壁水平鋼筋作為抗拉筋。采用嚴格的施工措施,加強振搗密實和養護,側壁外及時回填土并夯實,工程建成后觀測,地下室使用情況良好。
參考文獻:
1.1溫度裂縫溫度的變化會引起材料的熱脹、冷縮,當約束條件下溫度變形引起的溫度應力足夠大時,墻體就會產生溫度裂縫。最常見的裂縫是在砼平屋蓋房屋頂層兩端的墻體上,如在門窗洞邊的正八字斜裂縫,平屋頂下或屋頂圈梁下沿磚(塊)灰縫的水平裂縫等。導致平屋頂溫度裂縫的原因,是頂板的溫度比其下的墻體高得多,而砼頂板的線脹系數又比磚砌體大得多,故頂板和墻體間的變形差,在墻體中產生很大的拉力和剪力。剪應力在墻體內的分布為兩端大,中間小,頂層大,下部小。溫度裂縫是造成墻體早期裂縫的主要原因。這些裂縫一般經過一個冬夏之后才逐漸穩定,不再繼續發展。
1.2干縮裂縫燒結粘土磚,其干縮變形很小,且變形完成比較快。只要不使用新出窯的磚,一般不要考慮砌體本身的干縮變形引起的附加應力。但對這類砌體在潮濕情況下會產生較大的濕脹,而且這種濕脹是不可逆的變形。對于砌塊等砌體,隨著含水量的降低,材料會產生較大的干縮變形。如砼砌塊的干縮率為0.3~0.45mm/m,它相當于25~40℃的溫度變形,可見干縮變形的影響很大。輕骨料塊體砌體的干縮變形更大。干縮變形的特征是早期發展比較快,如砌塊出窯后放置28d能完成50%左右的干縮變形,以后逐步變慢,幾年后材料才能停止干縮。但是干縮后的材料受濕后仍會發生膨脹,脫水后材料會再次發生干縮變形,但其干縮率有所減小,約為第一次的80%左右。這類干縮變形引起的裂縫在建筑上分布廣、數量多、裂縫的程度也比較嚴重。如房屋內外縱墻中間對稱分布的倒八字裂縫;在建筑底部一至二層窗臺邊出現的斜裂縫或豎向裂縫;在大片墻面上出現的底部重、上部較輕的豎向裂縫。另外不同材料和構件的差異變形也會導致墻體開裂。如樓板錯層處或高低層連接處常出現的裂縫,框架填充墻或柱間墻因不同材料的差異變形出現的裂縫。
2裂縫的危害和防裂的迫切性
砌體屬于脆性材料,裂縫的存在降低了墻體的質量,如整體性、耐久性和抗震性能,同時墻體的裂縫給居住者在感觀上和心理上造成不良影響。它已成為住戶評判建筑物安全的一個非常直觀、敏感和首要的質量標準。因此加強砌體結構,已成為國家行政主管部門、建筑公司及房屋開發商共同關注的課題。
3現有產生裂縫的原因
3.1設計者重視強度設計而忽略抗裂構造措施設計者一般認為多層砌體房屋比較簡單,在強度方面作必要的計算后,針對構造措施,引用標準圖集,很少單獨提出有關防裂要求和措施。
3.2我國《砌體規范》抗裂措施的局限性我認為這是最為重要的原因?!镀鲶w規范》GBJ3-88的抗裂措施主要有兩條,一是第5.3.1條:對鋼筋砼屋蓋的溫度變化和砌體的干縮變形引起的墻體開裂,可采取設置保溫層或隔熱層;采用有檁屋蓋或瓦材屋蓋;控制硅酸鹽磚和砌塊出廠到砌筑的時間和防止雨淋。二是第5.3.2條:防止房屋在正常使用條件下,由溫差和墻體干縮引起的墻體豎向裂縫,應在墻體中設置伸縮縫。
由此可見,《砌體規范》的抗裂措施,如溫度區段限值,主要是針對干縮小、塊體小的粘土磚砌體結構的,而對干縮大、塊體尺寸比粘土磚大得多的砼砌塊和硅酸鹽砌體房屋,基本是不適用的。因為如果按照砼砌塊、硅酸鹽塊體砌體的干縮率0.2~0.4mm/m,無筋砌體的溫度區段不能越過10m;對配筋砌體也不能大于30m。在這方面,國外已有比較成熟的預防和控制墻體開裂的經驗,值得借鑒:一是在較長的墻上設置控制縫,這種控制縫和我國的雙墻伸縮縫不同,而是在單墻上設置的縫。該縫的構造既能允許建筑物墻體的伸縮變形,又能隔聲和防風雨,當需要承受平面外水平力時,可通過設置附加鋼筋達到。這種控制縫的間距要比我國規范的伸縮縫區段小得多。二是在砌體中根據材料的干縮性能,配置一定數量的抗裂鋼筋,其配筋率各國不盡相同,從0.03%~0.2%或將砌體設計成配筋砌體,如美國配筋砌體的最小含鋼率為0.07%,該配筋率又抗裂,又能保證砌體具有一定的延性。
4防止墻體開裂的具體構造措施建議
4.1防止混凝土屋蓋的溫度變化與砌體的干縮變形引起的墻體開裂,宜采取下列措施:
4.1.1屋蓋上設置保溫層或隔熱層;
4.1.2在屋蓋的適當部位設置控制縫,控制縫的間距不大于30m;
4.1.3當采用現澆混凝土挑檐的長度大于12m時,宜設置分隔縫,分隔縫的寬度不應小于20mm,縫內用彈性油膏嵌縫;
4.1.4建筑物溫度伸縮縫的間距除應滿足《砌體結構設計規范》BGJ3-88第5.3.2條的規定外,宜在建筑物墻體的適當部位設置控制縫,控制縫的間距不宜大于30m。
4.2防止主要由墻體材料的干縮引起的裂縫可采用下列措施之一
4.2.1設置控制縫①控制縫的設置位置a在墻的高度突然變化處設置豎向控制縫;b在墻的厚度突然變化處設置豎向控制縫;c在不大于離相交墻或轉角墻允許接縫距離之半設置豎向控制縫;d在門、窗洞口的一側或兩側設置豎向控制縫;e豎向控制縫,對3層以下的房屋,應沿房屋墻體的全高設置;對大于3層的房屋,可僅在建筑物1-2層和頂層墻體的上述位置設置;f控制縫在樓、屋蓋處可不貫通,但在該部位宜作成假縫,以控制可預料的裂縫;g控制縫作成隱式,與墻體的灰縫相一致,控制縫的寬度不大于12mm,控制縫內應用彈性密封材料,如聚硫化物、聚氨脂或硅樹脂等填縫。②控制縫的間距a對有規則洞口外墻不大于6mm;b對無洞墻體不大于8m及墻高的3倍;c在轉角部位,控制縫至墻轉角的距離不大于4.5m。
4.2.2設置灰縫鋼筋①在墻洞口上、下的第一道和第二道灰縫,鋼筋伸入洞口每側長度不應小于600mm;②在樓蓋標高以上,屋蓋標高以下的第二或第三道灰縫,和靠近墻頂的部位;③灰縫鋼筋的間距不大于600mm;④灰縫鋼筋距樓、屋蓋混凝土圈梁或配筋帶的距離不小于600mm;⑤灰縫鋼筋宜采用小螺紋鋼筋焊接網片,網片的縱向鋼筋不小于25,橫筋間距不宜大于200mm;⑥對均勻配筋時含鋼率不少于0.05%;局部截面配筋,如底、頂層窗洞上下不小于38;⑦灰縫鋼筋宜通長設置,當不便通長設置時,允許搭接,搭接長度不應小于300mm;⑧灰縫鋼筋兩端應錨人相交墻或轉角墻中,錨固長度不應小于300mm;⑨灰縫鋼筋應埋人砂漿中,灰縫鋼筋砂漿保護層,上下不小于3mm,外側小于15mm,灰縫鋼筋宜進行防腐處理;⑩當利用灰縫鋼筋作砌體抗剪鋼筋時,其配筋量應按計算確定,其搭接和錨固長度尚不應小于75d和300mm;不配筋的外葉墻應設控制縫,控制縫間距不宜大于6m;設置灰縫鋼筋的房屋的控制縫的間距不宜大于30m。
4.2.3在建筑物墻體中設置配筋帶①在樓蓋處和屋蓋處;②墻體的頂部;③窗臺的下部;④配筋帶的間距不應大于2400mm,也不宜小于800mm;⑤配筋帶的鋼筋,對190mm厚墻,不應小于2Φ12,對250~300mm厚墻不應小于2Φ16,當配筋帶作為過梁時,其配筋應按計算確定;⑥配筋帶鋼筋宜通長設置,當不能通長設置時,允許搭接,搭接長度不應小于45d和600mm;⑦配筋帶鋼筋應彎入轉角墻處錨固,錨固長度不應小于35d和400mm;⑧當鋼筋帶僅用于控制墻體裂縫時,宜在控制縫處斷開,當設計考慮需要通過控制縫時,宜在該處的配筋帶表面作成虛縫,以控制可預料的裂縫位置;⑨對地震設防裂度≥7度的地區,配筋帶的截面不應小于190mm×200mm,配筋不應小于410;⑩設置配筋帶的房屋的控制縫的間距不宜大于30m;
關鍵詞:混凝土;溫度裂縫;溫度應力;控制措施;養護
Abstract: the concrete in the construction process, temperature crack is common quality problems is also facing a construction crew of the technical problems. The cracking of the temperature will influence the structure performance, serious when still can affect the safety of the structure is used. Therefore, this paper expounds the cause of cracking of concrete temperature, analyzes the temperature stress related problems, this paper puts forward the control of the temperature cracks measures aimed at reducing the cracking of the temperature, ensure the quality of concrete.
Keywords: concrete; Temperature crack; Temperature stress; Control measures; maintenance
目前,混凝土依然是工程建設中應用最為廣泛的建筑材料。但在混凝土澆筑完后,經常還會發現有很多的裂縫出現,可以說混凝土的裂縫問題一直是其應用中的質量通病。在這些裂縫當中,我們遇到的主要是在施工中出現的裂縫。引起裂縫的原因是多方面的,比如混凝土的脆性和不均勻性、配合比不合理、施工不規范等等,而其中最主要的還是由于溫度和濕度的變化,在大體積混凝土中,溫度應力及溫度控制是影響溫度裂縫形成的關鍵,只有控制這個過程,才能有效的防治有害溫度裂縫的出現。所以必須從根本上分析溫度裂縫,來保證混凝土的質量。為此,本文對混凝土溫度裂縫產生的過程和控制措施進行了闡述。
1 混凝土溫度裂縫的成因
混凝土中產生裂縫有多種原因,主要是溫度和濕度的變化,混凝土的脆性和不均勻性(安定性),以及結構不合理,原材料不合格(如堿骨料反應),模板變形,基礎不均勻沉降等。
2 溫度應力的分析
根據溫度應力的形成過程可分為以下三個階段:
1)早期:自澆筑混凝土開始至水泥放熱基本結束,一般約30d。這個階段的兩個特征,一是水泥放出大量的水化熱,二是混凝上彈性模量的急劇變化。由于彈性模量的變化,這一時期在混凝土內形成殘余應力。
2)中期:自水泥放熱作用基本結束時起至混凝土冷卻到穩定溫度時止,這個時期中,溫度應力主要是由于混凝土的冷卻及外界氣溫變化所引起,這些應力與早期形成的殘余應力相疊加,在此期間混凝上的彈性模量變化不大。
3)晚期:混凝土完全冷卻以后的運轉時期。溫度應力主要是外界氣溫變化所引起,這些應力與前兩種的殘余應力相迭加。
根據溫度應力引起的原因可分為兩類:
1)自生應力:邊界上沒有任何約束或完全靜止的結構,如果內部溫度是非線性分布的,由于結構本身互相約束而出現的溫度應力。例如,軋線基礎底板,結構尺寸相對較大,混凝土冷卻時表面溫度低,內部溫度高,在表面出現拉應力,在中間出現壓應力。
2)約束應力:結構的全部或部分邊界受到外界的約束,不能自由變形而引起的應力。如箱梁頂板混凝土和護欄混凝土。
這兩種溫度應力往往和混凝土的干縮所引起的應力共同作用。
要想根據已知的溫度準確分析出溫度應力的分布、大小是一項比較復雜的工作。在大多數情況下,需要依靠模型試驗或數值計算?;炷恋男熳兪箿囟葢τ邢喈敶蟮乃神Y,計算溫度應力時,必須考慮徐變的影響,具體計算這里就不再細述。
3 溫度裂縫控制措施
為了防止裂縫,減輕溫度應力可以從控制溫度和改善約束條件兩個方面著手??刂茰囟鹊拇胧┤缦?
1)采用改善骨料級配,用干硬性混凝土,摻混合料,加引氣劑或塑化劑等措施以減少混凝土中的水泥用量;
2)拌合混凝土時加水或用水將碎石冷卻以降低混凝土的澆筑溫度;
3)熱天澆筑混凝土時減少澆筑厚度,利用澆筑層面散熱;
4)在混凝土中埋設水管,通入冷水降溫;
5)規定合理的拆模時間,氣溫驟降時進行表面保溫,以免混凝土表面發生急劇的溫度梯度;
6)施工中長期暴露的混凝土澆筑塊表面或薄壁結構,在寒冷季節采取保溫措施。
改善約束條件的措施是:
1)合理地分縫分塊;
2)避免基礎過大起伏;
3)合理的安排施工工序,避免過大的高差和側面長期暴露;
此外,改善混凝土的性能,提高抗裂能力,加強養護,防止表面干縮,特別是保證混凝土的質量對防止裂縫是十分重要,應特別注意避免產生貫穿裂縫,出現后要恢復其結構的整體性是十分困難的,因此,施工中應以預防貫穿性裂縫的發生為主。
在混凝土的施工中,為了提高模板的周轉率,往往要求新澆筑的混凝土盡早拆模。當混凝土溫度高于氣溫時應適當考慮拆模時間,以免引起混凝土表面的早期裂縫。新澆筑早期拆模,在表面引起很大的拉應力,出現“溫度沖擊”現象。在混凝土澆筑初期,由于水化熱的散發,表面引起相當大的拉應力,此時表面溫度亦較氣溫為高,此時拆除模板,表面溫度驟降,必然引起溫度梯度,從而在表面附加一拉應力,與水化熱應力迭加,再加上混凝土干縮,表面的拉應力達到很大的數值,就有導致裂縫的危險,但如果在拆除模板后及時在表面覆蓋一輕型保溫材料,如泡沫海棉等,對于防止混凝土表面產生過大的拉應力,具有顯著的效果。
加筋對大體積混凝土的溫度應力影響很小,因為大體積混凝土的含筋率極低。只是對一般鋼筋混凝土有影響。在溫度不太高及應力低于屈服極限的條件下,鋼的各項性能是穩定的,而與應力狀態、時間及溫度無關。鋼的線脹系數與混凝土線脹系數相差很小,在溫度變化時兩者間只發生很小的內應力。由于鋼的彈性模量為混凝土彈性模量的7~15倍,當內混凝土應力達到抗拉強度而開裂時,鋼筋的應力將不超過100~200kg/cm2。因此,在混凝土中想要利用鋼筋來防止細小裂縫的出現很困難。但加筋后結構內的裂縫一般就變得數目多、間距小、寬度與深度較小了。而且如果鋼筋的直徑細而間距密時,對提高混凝土抗裂性的效果較好?;炷梁弯摻罨炷两Y構的表面常常會發生細而淺的裂縫,其中大多數屬于干縮裂縫。雖然這種裂縫一般都較淺,但它對結構的強度和耐久性仍有一定的影響。
為保證混凝土工程質量,防止開裂,提高混凝土的耐久性,正確使用外加劑也是減少開裂的措施之一。例如使用減水防裂劑,筆者在實踐中總結出其主要作用為:
1)混凝土中存在大量毛細孔道,水蒸發后毛細管中產生毛細管張力,使混凝土干縮變形。增大毛細孔徑可降低毛細管表面張力,但會使混凝土強度降低。這個表面張力理論早在六十年代就已被國際上所確認。
2)水灰比是影響混凝土收縮的重要因素,使用減水防裂劑可使混凝土用水量減少25%。
3)水泥用量也是混凝土收縮率的重要因素,摻加減水防裂劑的混凝土在保持混凝土強度的條件下可減少15%的水泥用量,其體積用增加骨料用量來補充。
4)減水防裂劑可以改善水泥漿的稠度,減少混凝土泌水,減少沉縮變形。
5)提高水泥漿與骨料的粘結力,提高的混凝土抗裂性能。
6)混凝土在收縮時受到約束產生拉應力,當拉應力大于混凝土抗拉強度時裂縫就會產生。減水防裂劑可有效的提高的混凝土抗拉強度,大幅提高混凝土的抗裂性能。
7)摻加外加劑可使混凝土密實性好,可有效地提高混凝土的抗碳化性,減少碳化收縮。
8)摻減水防裂劑后混凝土緩凝時間適當,在有效防止水泥迅速水化放熱基礎上,避免因水泥長期不凝而帶來的塑性收縮增加。
9)摻外加劑混凝土和易性好,表面易摸平,形成微膜,減少水分蒸發,減少干燥收縮。
許多外加劑都有緩凝、增加和易性、改善塑性的功能,我們在工程實踐中應多進行這方面的實驗對比和研究,比單純的靠改善外部條件,可能會更加簡捷、經濟。
4 混凝土的早期養護
實踐證明,混凝土常見的裂縫,大多數是不同深度的表面裂縫,其主要原因是溫度梯度造成寒冷地區的溫度驟降也容易形成裂縫。因此,混凝土的保溫對防止表面早期裂縫尤其重要。從溫度應力觀點出發,保溫應達到下述要求:
1)防止混凝土內外溫度差及混凝土表面梯度,防止表面裂縫。
2)防止混凝土超冷,應該盡量設法使混凝土的施工期最低溫度不低于混凝土使用期的穩定溫度。
3)防止老混凝土過冷,以減少新老混凝土間的約束。
混凝土的早期養護,主要目的在于保持適宜的溫濕條件,以達到兩個方面的效果,一方面使混凝土免受不利溫、濕度變形的侵襲,防止有害的冷縮和干縮。一方面使水泥水化作用順利進行,以期達到設計的強度和抗裂能力。
適宜的溫濕度條件是相互關聯的?;炷系谋卮胧┏3R灿斜竦男Ч?。
從理論上分析,新澆混凝土中所含水分完全可以滿足水泥水化的要求而有余。但由于蒸發等原因常引起水分損失,從而推遲或防礙水泥的水化,表面混凝土最容易而且直接受到這種不利影響。因此混凝土澆筑后的最初幾天是養護的關鍵時期,在施工中應切實重視起來,最好是用塑料薄膜進行包裹養護,如果進入冬季施工,塑料薄膜上表面還應該加蓋保溫被。
5 結束語
總之,通過控制溫度和改善約束條件,并在材料選擇、施工工藝、以及后期的養護過程中能夠充分考慮各種因素的影響,采取相應的技術措施,混凝土溫度裂縫還是可以有效控制的。筆者相信,隨著工程技術的不斷發展,新的施工工藝、新材料的不斷出現,一定會有更加先進的溫度裂縫控制措施出現。
隨著我國經濟的快速發展,建設工程方面也得到一定的進步。為了滿足結構上的需要,大體積砼施工越來越廣泛的得以應用。但是在施工中會因為溫度問題導致出現裂縫,砼的裂縫不僅影響著砼的外觀質量,更影響著砼的耐久性以及結構的安全,因此,清楚砼裂縫產生的原因并制定出防治措施具有十分重要意義。
一、大體積砼結構特點
大體積砼結構體積較大,其內部水泥水化熱散發比較困難,在外部環境影響以及砼結構內部影響下,很容易產生溫度裂縫。大體積砼結構的特點如下:
(一)脆性較強:砼結構所使用的砼材料是脆性材料,其有著較大的抗壓強度,但抗拉強度較弱,能夠拉伸產生的變形很小,因此一旦受到內部應力產生拉伸時,其很難通過拉伸來緩解應力,從而產生裂縫。
(二)產生的應力較大:大體積砼結構斷面的尺寸一般較大,在砼結構澆筑后,其內部會產生大量的水化熱,致使內部溫度上升,產生的拉應力較大。
(三)受環境影響較大:大體積砼結構長期暴露在外部環境中,環境溫度的變化也會導致砼結構內部產生拉應力。
二、大體積砼溫度裂縫產生的原因
砼會因為溫度的升高和降低而產生相應的體積變化,而當砼的收縮受到了限制和約束時,則會出現一定的拉力。這種拉力一旦超過了砼本身的承受能力,那么將會導致砼出現裂縫問題。大體積砼溫度裂縫產生的主要原因包含了以下幾點。
(一)水泥的水化熱
大體積砼由于水泥水化時會放出大量的水化熱,而砼自身體積較厚,表面直接和空氣接觸,散熱條件較好,熱量可以向大氣中散發,表面溫度上升較少。砼自身導熱性較差,水泥水化熱積聚在砼內部不易散發,溫度會上升較多這樣就會形成外低內高的溫差,產生溫度應力,若溫度應力超過砼的抗拉強度,砼就會產生裂縫。
(二)內外約束條件
基礎砼一般與地基整體澆筑在一起,當溫度變化時,由于外部約束和內部約束的存在,砼不能自由變形。砼澆筑之后早期溫度上升時,產生的膨脹變形受到地基土約束面產生壓應力,此時砼的彈性模量很小,徐變和應力松弛卻較大,與基層連接也不太牢固,從而壓應力較小。砼表面溫度下降較快,受溫差產生的溫度應力和內部約束的影響,砼表面會產生很大的拉應力。因此,降低砼內外溫差和改善約束條件,是防止砼產生裂縫的重要措施。
(三)外界氣溫引起的變化
砼在澆筑過程中產生的溫度與外界氣溫的變化有著直接的關系,澆筑產生的溫度同時也影響砼內部溫度。當大體積砼遭受到溫度的快速變化時,會給砼內部造成較為明顯的影響。例如在冬季,過早的拆模,那么一旦遭遇到了嚴寒的侵襲,就會導致砼的表面溫度發生快速變化,收縮十分明顯。這種情況下砼會受到很大的拉應力,如果砼不能抵抗這種拉應力,就會形成裂縫。但這種裂縫的出現通常只在表面較淺的位置上,因此,不會對結構造成嚴重的影響。
三、大體積砼施工的溫度裂縫控制措施
(一)科學選用材料,適當使用外加劑
1、科學選用水泥。優先選擇中低水化熱硅酸鹽水泥或低水化熱礦渣硅酸鹽水泥,如復合水泥、礦渣硅酸鹽水泥、粉煤灰水泥、火山灰質硅酸鹽水泥等優質水泥,有利于降低砼溫度梯度。
2、骨料控制。細骨料宜采用細度模數大于2.3的中砂,含泥量不應大于3%。粗骨料宜選用連續級配,粒徑5~31.5mm,含泥量不應大于1%。一方面應盡量使用高強度骨料,另一方面砂率和坍落度應盡量選用較小數值,以減小孔隙率,避免裂縫產生[2]。
3、摻合料與外加劑。第一,可適當的在砼中加入能降低水化熱的粉煤灰,粉煤灰除了能改善砼性能外,還能減少水泥用量,節省成本。第二,添加UEA。在水泥硬化過程中,UEA能補償冷縮與干縮,從而降低裂縫發生的可能性。
(二)確定砼的施工工藝
大體積砼的澆筑可以根據結構特點的不同采用不同的澆筑方法,如全斷面分層澆筑、分段分層澆筑、和斜面分層澆筑。砼采用分段分層澆筑時,每段澆筑高度應根據結構特點、鋼筋疏密程度決定,砼澆注層厚度應根據所選用振搗器的作用深度及砼的和易性確定。一般為振搗器作用半徑的1.25倍,但厚度不宜大于500mm。在前層砼初凝之前將次層砼澆筑完畢。每澆筑一層砼都應及時均勻振搗,保證砼的密實[3]。預埋冷水管,用循環水降低大體積砼的溫度,進行人工導熱,降低溫差。大體積砼澆筑過程中,應采取防止鋼筋、埋件等的位移和變形措施,并應及時清除砼表面的泌水,在砼初凝前進行二次抹壓處理,減少干縮裂縫的出現。
(三)加強養護
對大體積砼進行養護工作是工程中的一項重要內容。應保持大體積砼的溫度和濕度適宜,并控制溫差的產生,是一項比較復雜的工作。當大體積砼澆筑兩個小時以后,應使用塑料膜來對表面進行覆蓋,以便于能提升其表面的溫度,減少內外溫差。同時,可以進行帶水養護工作,養護的時間控制在14天以上。這種方式比較適合夏季使用。冬季的時候,應在結構外露的部分進行保溫材料覆蓋,以便于減緩散熱的過程,使砼的強度能得到提。此外,要想對大體積砼進行溫度上的有效控制,還應對此進行科學方式檢測。對此,應設置出相應的測溫點,這樣一來就能及時掌握溫度變化數據,提升控制的準確性。
四、結語
大體積砼的溫度裂縫通過嚴謹、周密、科學可行的措施是可以避免的。相信大體積砼的溫度裂縫也會隨著科學技術的進步、建筑施工水平的提高、建筑工人素質的改善而變得更加容易解決。
參考文獻:
混凝土在現代工程建設中有重要的地位。而在今天,混凝土的裂縫較為普遍,盡管我們在施工中采取各種措施,小心謹慎,但裂縫仍然時有出現。因此僅對施工中混凝土裂縫產生的原因和處理措施進一步探討。
一、裂縫的原因
混凝土中產生裂縫有多種原因,主要是1混凝土具有熱脹冷縮的性質,當環境溫度發生變化或水泥化熱使混凝土溫度發生變化時,鋼筋混凝土結構就會產生溫度變形。眾所周知,建筑工地物中的結構構件往往受到各種約束,在溫度變形和約束的共同作用下,產生溫度應力,當這種應力超過混凝土的抗裂強度時,就產生裂縫。2鋼筋混凝土受熱后,物理力學性能惡化,軸心抗壓,彎曲抗壓或抗拉強度隨受熱溫度的提高而下降?;炷潦軣岷螅蛴坞x水蒸發和水泥結石脫水收縮而形成裂縫,鋼筋與混凝土的粘結力也隨之下降,這種現象在光圓鋼筋中尤為明顯。
二、溫度應力的分析
1、根據溫度應力的形成過程可分為以下三個階段
(1)早期:自澆筑混凝土開始至水泥放熱基本結束,一般約30天。這個階段的兩個特征,一是水泥放出大量的水化熱,二是混凝土上彈性模量的急劇變化。由于彈性模量的變化,這一時期在混凝土內形成殘余應力。
(2)中期:自水泥放熱作用基本結束時起至混凝土冷卻到穩定溫度時止,這個時期中,溫度應力主要是由于混凝土的冷卻及外界氣溫變化所引起,這些應力與早期形成的殘余應力相疊加,在此期間混凝土的彈性模量變化不大。
(3)晚期:混凝土完全冷卻以后的運轉時期。溫度應力主要是外界氣溫變化所引起,這些應力與前兩種的殘余應力相加。
2、根據溫度應力引起的原因可分為兩類
(1)自生應力:邊界沒有任何約束或完全靜止的結構,如果內部溫度是非線性分布的,由于結構本身互相約束而出現的溫度應力?;炷晾鋮s時表面溫度低,內部溫度高,在表面出現的溫度應力?;炷晾鋮s時表面溫度低,內部溫度高,在表面出現拉應力,在中間出現壓應力。
(2)約束應力:結構的全部或部分邊界受到外界的約束,不能自由變形而引起的應力共同作用。要想根據已知的溫度準確分析出溫度的應力的分布、大小是一項比較復雜的工作。在大多數情況下,需要依靠模型試驗或數值計算?;炷恋男熳兪箿囟葢τ邢喈敶蟮乃神Y,計算溫度應力時,必須考慮徐變的影響,具體計算這里就不再細述。
三、溫度的控制和防止裂縫的措施
為了防止裂縫,減輕溫度應力可以從控制溫度和改善約束條件兩個方面著手。
1、控制溫度
控制溫度的措施如下:(1)采用改善集料級配,摻用摻合料,外加劑和降低混凝土坍落度等綜合措施,合理的減少單位水泥用量,并盡量選用水化熱低的水泥;(2)混凝土拌合時,可采用低溫水、加冰等降溫;(3)粗集料預冷可采用風冷法、浸水法、噴灑冷水法;(4)在混凝土中埋設水管,通入冷水降溫;(5)降低混凝土澆筑溫度,減少水化熱溫升;(6)加強混凝土原材料、澆筑溫度及內務部溫度的監測。
2、改善約束條件
改善約束條件的措施是:(1)混凝土澆筑的分段、分縫、分塊高度及澆筑間歇時間;(2)基礎過大起伏;(3)合理的安排施工工序,避免過大的高差和側面長期暴露;
為保證混凝土工程質量,提高混凝土的耐久性,正確使用外加劑也是減少開裂的措施之一。例如使用減水防裂劑等。(1)水灰比是影響混凝土收縮的重要因素,使用減水防裂劑可使混凝土用水量減少25%。(2)減水防裂劑可以發送水泥漿的稠度,減少混凝土泌水,減少沉縮變形。(3)提高水泥漿與骨料的粘結力,提高混凝土抗裂性能。(4)混凝土在收縮時受到約束產生拉應力,當拉應力大于混凝土抗拉強度時裂縫就會產生。減水防裂劑可有效的提高的混凝土抗拉強度,大幅提高混凝土的抗裂性能。(5)摻加外加劑可使混凝土密實性好,可有效地提高混凝土的抗碳化性,減少碳化收縮。(6)摻外加劑混凝土和易性好,表面易摸平,形成微膜,減少水分蒸發,減少干燥收縮。
四、混凝土的早期養護
實踐證明,混凝土常見的裂縫,大多數是不同嘗試的表面裂縫,其主要原因是溫度造成寒冷地區的溫度驟降也容易形成裂縫。因此說混凝土的保溫對防止表面早期裂縫尤其重要。從溫度應力觀點出發,保溫應達到下述要求:(1)防止混凝土內外溫度差及混凝土表面,防止表面裂縫;(2)防止混凝土超冷,應該盡量設法使混凝土的施工期最低溫度不低于混凝土使用期的穩定溫度;(3)防止混凝土過冷,以減少新老混凝土間的約束。
混凝土的早期養護,主要目的在于保持適宜的溫濕條件以達到兩個方面的效果,一方面使混凝土免受不利溫、濕度變形的侵襲,防止有害的冷縮和干縮。一方面使水泥水化作用順利進行,以期達到設計的強度和抗裂能力。
適宜的溫濕度條件是相互關聯的。混凝土的保溫措施常常也有保濕的效果人。從理論上分析,混凝土中所含水分完全可以滿足水泥水化的要求而有余。但由于蒸發等原因常引起水分損失,從而推遲或防礙水泥的水化,表面混凝土最容易直接受到這種不利影響。因此混凝土澆筑后的最初幾天是養護的關鍵時期,在施工中應切實重視起來。
2采用高性能混凝土施工技術
本工程混凝土最大輸送距離達300m,最大輸送高度為60m,為滿足泵送混凝土和體育場復雜特殊造型的施工要求,我們大量采用了高性能混凝土施工技術。在體育場北區配置了l臺意大利進口的大型現代化攪拌站,產量為90m’/h;南區配置了自動上料和自動稱量系統的混凝土攪拌站2座,產量為30~50m3/h。針對本工程的需要,配制高性能混凝土時為了優選原材料和配合比,我們應用“雙摻”技術,除提高混凝土的可泵性外,還有意識地預先通過試驗確定低收縮率的混凝土配合比,同時減少水泥用量,降低混凝土的水化熱和改善其收縮性能。
2.1優選原材料
選用優質的原材料,如底板施工中采用連續級配骨料,增大混凝土的密實度。嚴格控制混凝土出機和人泵坍落度,隨不同施工階段的設計要求與天氣變化情況跟蹤調整配合比,詳見表1。
2.2采用“雙摻技術
在本工程施工中,地下室底板使用KFDN-SP8外加劑,看臺樓層等混凝土結構根據具體情況,選用HPM一2高效緩凝減水劑、FE—C2外加劑等,這些高效外加劑具有高減水率和良好的保塑性能。摻外加劑混凝土與基準混凝土的減水效應比較如圖1所示。
根據本工程的具體情況,我們分別選用黃埔電廠、廣州發電廠等的I級或Ⅱ級粉煤灰,采用粉煤灰這種活性的水硬性材料代替部分水泥,補充泵送混凝土中的細骨料,提高混凝土的抗滲性、耐久性和流動性,并改善其可泵性和降低水化熱,從而提高混凝土的后期強度。
2.3配合比選擇
混凝土的配合比決定了混凝土的強度、抗滲性、和易性、坍落度、水泥用量、水化熱大小、初凝和終凝時間以及混凝土收縮率等性能指標。根據結構的不同特點和設計要求、氣候條件,摻人粉煤灰的影響以及施工現場的生產管理狀況,采用不同技術指標,由實驗室試配確定。
(1)地下室底板施工階段根據現場條件,對底板混凝土提出以下指標:①坍落度12—14cm;②初凝時間6—8h;③摻加高效減水劑,超量摻加I級粉煤灰,減少水泥用量,降低水化熱;④通過試驗選定收縮率較小的配合比。為了確?;炷辆哂懈咝阅?,我們提前對混凝土配合比進行了大量反復多次的試驗,取得十幾組試配數據,測試了不同配合比混凝土的收縮率及收縮與齡期的關系,并采用鋼環試驗方法測試混凝土的長期收縮情況。測定混凝土收縮率后,有意識地模擬澆筑一塊混凝土試件進行試驗,測試其溫度變化和收縮率,確定了表2的配合比,其收縮率為0.12%0,且在14d后基本上不再收縮。實踐證明,本配合比是成功的,用I級粉煤灰代替部分水泥,大大減少了水泥用量和降低了水化熱,在確定了收縮率較小的配比后,據此收縮率確定底板分塊的最大長度為45m,相鄰塊之間混凝土澆筑的時間間隔為14d。
(2)看臺樓層選擇不同的水泥和多種外加劑進行配合比試驗研究,對外加劑的適應性進行對比試驗,得出針對不同階段和不同施工部位的優化配合比。北區采用深圳產FE—C2外加劑摻量為1.6%,黃埔電廠的Ⅱ級粉煤灰摻量為22%,既滿足了混凝土的強度要求,又具有良好的可泵性和經濟性。南區采用HPM一2高效緩凝減水劑和黃埔電廠的Ⅱ級粉煤灰得出的配合比,即:水泥:混合材:砂:石:水:外加劑=l:0.23:2.17:3.20:0.53:0.016,水泥、砂、石、水、粉煤灰、外加劑用量分別為332,722,1063,176,77,5.28~m3,水膠比0.44%,含砂率40.4%,坍落度145mm,質量密度2370kg//m3,初凝n,-Jl''''~q5—8h,終凝時間8—10h。
近年來,隨著科技水平的不斷提升,我國建筑工程質量總體水平有了較大提高,但存在的問題仍然不少。在施工中由于各種因素的影響,經常會出現這樣或那樣的質量問題,甚至造成質量事故,產生嚴重的后果。而在眾多的質量事故中,溫度變化引起的裂縫是一種典型的質量問題。因此,探討質量控制措施與如何防治溫變裂縫的產生,對于保證建筑工程建筑物的質量有著重要意義。
一、建筑結構件工程中溫度變化引起裂縫的主要原因
1、建筑結構件隨著溫度的變化而產生變形,即通常所說的熱脹冷縮。當變形受到約束時,便產生了裂縫,約束的程度越大,裂縫就越寬。
2、水泥和水所引起化學反應引起裂縫。大體積混凝土開列的主要原因之一,是由于混凝土在硬化過程中,水泥和水起化學反應,產生大量的水化熱引起混凝土的溫度上升,如果熱量不能很快散失,內部和外部溫差過大,就將產生溫度應力,使結構內部受壓,外部受拉。混凝土在硬化初期,只有很低的抗拉強度,如果由內外溫度差引起的拉應力超過混凝土早期抗拉強度時,混凝土就要產生裂縫。
3、構件硬化成型后,在使用中,如果溫度較大,構件內部溫度梯度就極大,也會引起構件開裂。
4、建筑結構件澆筑、養護及拆模過程中采用不當的施工方法,從而加劇溫度變化產生裂縫。
二、建筑結構件工程質量控制的一般措施
1、組織措施
組建項目監理機構,配置滿足工作需要的監理人員,并在約定的時間內,總監理工程師及其他監理人員派駐工地。建立現代企業制度,建立和健全質量控制體系,加強內部管理,對監理人員進行技術管理培訓,建立考核獎懲制度。確定監理機構各部門職責分工及各級監理人員權限,并報送發包人和通知承包人。組織第一次工地會議,監理例會、監理專題會議和編寫會議記錄分發與會各方,保障工程質量,要求或建議承包人組織一定數量高素質的民工參與建設,督促承包人做好生活后勤工作,保障工地人員健康專注地投入施工。建議或要求必包人提供便利的施工條件,確保控制工程質量。
2、管理措施
健全技術文件審核、審批制度。根據施工合同約定,由雙方提交的施工技術圖紙以及由承包人提交的施工組織設計及施工計劃、施工進度計劃等文件應經過監理機構核查、審核、審批。督促承包商嚴格按照設計圖紙、施工規范、驗收標準,工作的各種商洽必須經有關監理工程師簽字后方可實施。審查主要材料、設備的質量和核定其性能,參加工程驗收工作,參與工程質量事故的處理。
3、經濟措施和合同措施
嚴格質量檢驗和驗收,嚴格按照雙方的合同實行嚴格公平、公正的獎懲措施。對經驗收不合格的工場部位拒付工程款。
三、建筑結構件工程中溫變裂縫質量控制的主要技術措施
1、預防熱脹冷縮的措施:(1)撤去約束,允許自由的產生變形;(2)設置伸縮縫。
2、防止化學反應引起裂縫產生的措施是:(1)盡量選用低熱或中熱降低泥礦渣水泥、粉煤灰水泥;(2)降低水灰比,一般混凝土的水灰比控制在450kg/m2以下;(3)降低水灰比,一般混凝土的水灰比控制在0.60以下;(4)改善骨科級配,摻加粉煤灰或高效減少水劑等來減少水泥用量,降低水化熱;(5)改善混凝土的攪拌工藝,采用”二次風冷“新工藝降低混凝土的澆筑溫度;(6)在混凝土中摻加一定量的具有減水、增塑、緩凝等作用的外加劑,改善混凝土拌和物的流動性、保水性,降低水熱化,推遲熱峰出現的時間;(7)合理安排施工工序,分層、分塊澆筑,以利于散熱,減小約束;(8)在大體積混凝土內部設置冷卻管道,通過冷水或冷氣冷卻,減小混凝土的內部溫差;(9)加強混凝土溫度的監控,及時采取冷卻保護措施;(10)、加強混凝土養護,混凝土澆筑后,及時用濕潤的草簾、麻片等覆蓋,并灑水養護,適當延長養護時間,保證混凝土表現緩慢冷卻,在寒冷季節,混凝土兩面必須采取保溫措施,以防寒潮襲擊。
3、預防產生比類裂縫的措施是:采用隔熱(或保溫)措施,盡量減少構件內部溫度梯度,在配筋時應考慮溫度力的影響。
4、預防結構件澆筑及養護過程產生裂縫的措施:
(1)針對建筑結構件伸縮較大的特點,澆筑混凝土時每隔30m左右設置后澆帶。(2)澆筑中,下落高度不超過1.5m,混凝土不得成堆,及時出料、及時成活,以免產生離析現象,使得現澆板配料不均;嚴格按照操作規程進行施工,選擇熟練的混凝土振搗工人,掌握好振搗時間,以保證混凝土振搗均勻、密實,避免漏振、欠振,并做好混凝土施工記錄。(3) 建筑結構件混凝土澆筑成型后,應及時覆蓋塑料薄膜,避免水分蒸發;澆筑1h~2h后對混凝土二次振搗,以消除收縮裂紋及表面泌水,2h~3h后進行二次壓面,并適時用木抹子磨平搓毛2遍以上。(4) 建筑結構件混凝土養護時間不得少于7d,對有抗滲要求的混凝土養護時間不得少于14d;留置混凝土同條件試塊,并設專人檢測混凝土強度增長情況,在其強度未達到1.2Mpa時,不得在其上踩踏或安裝模板及支架。(5)嚴格按照GB50204-2002混凝土結構工程施工質量驗收規范中的強度要求確定模板拆除時間,拆模時要輕拿輕放,不得對樓層形成沖擊荷載,拆除的模板和支架要分散堆放并及時清運。
四、建筑結構件工程質量控制的保證措施
1、質量的事前控制
審核由發包人提供的各種工程資料。檢查場內道路、供水、供電等施工輔助設施的準備。審核承包人中標后的施工組織設計、施工措施計劃等技術文件。明確質量要求,掌握和熟悉質量控制的技術依據。參與承包人對發包人提供的測量基準點復核情況,并督促承包人在此基礎上完成施工測量控制網的布設及施工區原地形圖的測繪。嚴格審核工程開工應具備的各項條件,并審批開工申請。
2、質量的事中控制
施工工藝過程質量控制,采用現場檢查、查閱施工記錄以及材料和構配件、監督試驗、見證取樣,按照旁站方案進行旁站、及時對承包人可能影響工程質量的施工方法以及各種違章作業行為發出調整、制止、整頓直至停止施工批示。發現承包人使用的材料、構配件、工程設備等原因可能導致工程質量不合格或千萬事故時,要求承包人采取措施糾正。發現施工環境可能影響工程質量時,應批示承包人采取有效的防范措施。堅持上道工序不檢查不準進行下道工序的原則。上道工序完成后,先由施工單位進行自檢、專職檢,認為合格后再通知現場監理工程師或其他代表到現場會同檢驗。檢驗合格后簽署認可,方能進行下道工序。隱蔽工程檢查驗收,隱蔽工程完成后,先由施工單位自檢、專職檢,初難合格后填報隱蔽工程驗收單,報告現場監理工程師檢查驗收。分項、分部工程驗收。應對施工過程中出現的質量問題,以及處理措施或遺漏問題進行詳細的記錄和拍照,保存好照片等相差資料。工程質量事故處理,質量事故原因、責任的分析--質量事故處理措施的研究確定及處理效果的檢查。
3、質量的事后控制
事后嚴肅把關,對于質量控制要點、要害部位或質量有疑問的部位進行事后復檢。嚴格按照質量評判標準對單元、分部、單位工程組織驗收認證。實行質量保證金制度,讓“制造”者跟蹤一段時間的質量保證,完善其缺陷服務責任。在一定的時間內,盡量讓工程在設計負載條件下運行后,再對整個工程組織驗收。
為了確保建筑結構件工程質量,工程管理者應講究質量控制的措施,實行事前控制與事后控制。而典型質量問題――溫變裂縫則應采取具體的控制措施,以防治因裂縫產生質量事故的發生。
參考文獻:
[1]高等學校試用教材.建筑材料,1985.
中圖分類號:TU973+.254 文獻標識碼:A 文章編號:1672-3198(2009)03-0287-01
1 裂縫的原因
混凝土中產生裂縫有多種原因,主要是溫度和濕度的變化,混凝土的脆性和不均勻性,以及結構不合理,原材料不合格,模板變形,基礎不均勻沉降等。混凝土硬化期間水泥放出大量水化熱,內部溫度不斷上升,在表面引起拉應力。后期在降溫過程中,由于受到基礎或老混凝上的約束,又會在混凝土內部出現拉應力。氣溫的降低也會在混凝土表面引起很大的拉應力。在鋼筋混凝土中,拉應力主要是由鋼筋承擔,混凝土只是承受壓應力。在素混凝土內或鋼筋混凝上的邊緣部位如果結構內出現了拉應力,則須依靠混凝土自身承擔。一般設計中均要求不出現拉應力或者只出現很小的拉應力。但是在施工中混凝土由最高溫度冷卻到運轉時期的穩定溫度,往往在混凝土內部引起相當大的拉應力。有時溫度應力可超過其它外荷載所引起的應力,因此掌握溫度應力的變化規律對于進行合理的結構設計和施工極為重要。
2 應力的分析
(1)早期:自澆筑混凝土開始至水泥放熱基本結束,一般約30天。這個階段的兩個特征,一是水泥放出大量的水化熱,二是混凝上彈性模量的急劇變化。由于彈性模量的變化,這一時期在混凝土內形成殘余應力。
(2)中期:自水泥放熱作用基本結束時起至混凝土冷卻到穩定溫度時止,這個時期中,溫度應力主要是由于混凝土的冷卻及外界氣溫變化所引起,這些應力與早期形成的殘余應力相疊加,在此期間混凝上的彈性模量變化不大。
(3)晚期:混凝土完全冷卻以后的運轉時期。溫度應力主要是外界氣溫變化所引起,這些應力與前兩種的殘余應力相迭加。
3 根據溫度應力引起的原因可分為兩類:
(1)自生應力:邊界上沒有任何約束或完全靜止的結構,如果內部溫度是非線性分布的,由于結構本身互相約束而出現的溫度應力。例如,橋梁墩身,結構尺寸相對較大,混凝土冷卻時表面溫度低,內部溫度高,在表面出現拉應力,在中間出現壓應力。
(2)約束應力:結構的全部或部分邊界受到外界的約束,不能自由變形而引起的應力。如箱梁頂板混凝土和護欄混凝土。
4 溫度的控制和防止裂縫的措施
(1)采用改善骨料級配,用干硬性混凝土,摻混合料,加引氣劑或塑化劑等措施以減少混凝土中的水泥用量。
(2)拌合混凝土時加水或用水將碎石冷卻以降低混凝土的澆筑溫度。
(3)熱天澆筑混凝土時減少澆筑厚度,利用澆筑層面散熱。
(4)在混凝土中埋設水管,通入冷水降溫。
(5)規定合理的拆模時間,氣溫驟降時進行表面保溫,以免混凝土表面發生急劇的溫度梯度。
(6)施工中長期暴露的混凝土澆筑塊表面或薄壁結構,在寒冷季節采取保溫措施。
在混凝土的施工中,為了提高模板的周轉率,往往要求新澆筑的混凝土盡早拆模。當混凝土溫度高于氣溫時應適當考慮拆模時間,以免引起混凝土表面的早期裂縫。新澆筑早期拆模,在表面引起很大的拉應力,出現“溫度沖擊”現象。在混凝土澆筑初期,由于水化熱的散發,表面引起相當大的拉應力,此時表面溫度亦較氣溫為高,此時拆除模板,表面溫度驟降,必然引起溫度梯度,從而在表面附加一拉應力,與水化熱應力迭加,再加上混凝土干縮,表面的拉應力達到很大的數值,就有導致裂縫的危險,但如果在拆除模板后及時在表面覆蓋一輕型保溫材料,如泡沫海棉等,對于防止混凝土表面產生過大的拉應力,具有顯著的效果。
加筋對大體積混凝土的溫度應力影響很小,因為大體積混凝土的含筋率極低。只是對一般鋼筋混凝土有影響。在溫度不太高及應力低于屈服極限的條件下,鋼的各項性能是穩定的,而與應力狀態、時間及溫度無關。鋼的線脹系數與混凝土線脹系數相差很小,在溫度變化時兩者間只發生很小的內應力。由于鋼的彈性模量為混凝土彈性模量的7~15倍,當內混凝土應力達到抗拉強度而開裂時,鋼筋的應力將不超過100~200kg/cm2..因此,在混凝土中想要利用鋼筋來防止細小裂縫的出現很困難。但加筋后結構內的裂縫一般就變得數目多、間距小、寬度與深度較小了。而且如果鋼筋的直徑細而間距密時,對提高混凝土抗裂性的效果較好?;炷梁弯摻罨炷两Y構的表面常常會發生細而淺的裂縫,其中大多數屬于干縮裂縫。雖然這種裂縫一般都較淺,但它對結構的強度和耐久性仍有一定的影響。
5 使用外加劑也是減少開裂的措施之一
(1)混凝土中存在大量毛細孔道,水蒸發后毛細管中產生毛細管張力,使混凝土干縮變形。增大毛細孔徑可降低毛細管表面張力,但會使混凝土強度降低。這個表面張力理論早在六十年代就已被國際上所確認。
(2)水灰比是影響混凝土收縮的重要因素,使用減水防裂劑可使混凝土用水量減少25%。
(3)水泥用量也是混凝土收縮率的重要因素,摻加減水防裂劑的混凝土在保持混凝土強度的條件下可減少15%的水泥用量,其體積用增加骨料用量來補充。
(4)減水防裂劑可以改善水泥漿的稠度,減少混凝土泌水,減少沉縮變形。
(5)提高水泥漿與骨料的粘結力,提高的混凝土抗裂性能。
(6)混凝土在收縮時受到約束產生拉應力,當拉應力大于混凝土抗拉強度時裂縫就會產生。減水防裂劑可有效的提高的混凝土抗拉強度,大幅提高混凝土的抗裂性能。
(7)摻加外加劑可使混凝土密實性好,可有效地提高混凝土的抗碳化性,減少碳化收縮。
(8)摻減水防裂劑后混凝土緩凝時間適當,在有效防止水泥迅速水化放熱基礎上,避免因水泥長期不凝而帶來的塑性收縮增加。
(9)摻外加劑混凝土和易性好,表面易摸平,形成微膜,減少水分蒸發,減少干燥收縮。
許多外加劑都有緩凝、增加和易性、改善塑性的功能,我們在工程實踐中應多進行這方面的實驗對比和研究,比單純的靠改善外部條件,可能會更加簡捷、經濟。
6 混凝土的早期養護
從溫度應力觀點出發,保溫應達到下述要求:
(1)防止混凝土內外溫度差及混凝土表面梯度,防止表面裂縫。
(2)防止混凝土超冷,應該盡量設法使混凝土的施工期最低溫度不低于混凝土使用期的穩定溫度。
(3)防止老混凝土過冷,以減少新老混凝土間的約束。
混凝土的早期養護,主要目的在于保持適宜的溫濕條件,以達到兩個方面的效果,一方面使混凝土免受不利溫、濕度變形的侵襲,防止有害的冷縮和干縮。一方面使水泥水化作用順利進行,以期達到設計的強度和抗裂能力。
7 結語
以上對混凝土的施工溫度與裂縫之間的關系進行了理論和實踐上的初步探討,雖然學術界對于混凝土裂縫的成因和計算方法有不同的理論,但對于具體的預防和改善措施意見還是比較統一,同時在實踐中的應用效果也是比較好的,具體施工中要靠我們多觀察、多比較,出現問題后多分析、多總結,結合多種預防處理措施,混凝土的裂縫是完全可以避免的。
參考文獻
1 裂縫的原因
混凝土中產生裂縫有多種原因,主要是溫度和濕度的變化,混凝土的脆性和不均勻性,以及結構不合理,原材料不合格,模板變形,基礎不均勻沉降等?;炷劣不陂g水泥放出大量水化熱,內部溫度不斷上升,在表面引起拉應力。后期在降溫過程中,由于受到基礎或老混凝上的約束,又會在混凝土內部出現拉應力。氣溫的降低也會在混凝土表面引起很大的拉應力。在鋼筋混凝土中,拉應力主要是由鋼筋承擔,混凝土只是承受壓應力。在素混凝土內或鋼筋混凝上的邊緣部位如果結構內出現了拉應力,則須依靠混凝土自身承擔。一般設計中均要求不出現拉應力或者只出現很小的拉應力。但是在施工中混凝土由最高溫度冷卻到運轉時期的穩定溫度,往往在混凝土內部引起相當大的拉應力。有時溫度應力可超過其它外荷載所引起的應力,因此掌握溫度應力的變化規律對于進行合理的結構設計和施工極為重要。
2 應力的分析
(1)早期:自澆筑混凝土開始至水泥放熱基本結束,一般約30天。這個階段的兩個特征,一是水泥放出大量的水化熱,二是混凝上彈性模量的急劇變化。由于彈性模量的變化,這一時期在混凝土內形成殘余應力。
(2)中期:自水泥放熱作用基本結束時起至混凝土冷卻到穩定溫度時止,這個時期中,溫度應力主要是由于混凝土的冷卻及外界氣溫變化所引起,這些應力與早期形成的殘余應力相疊加,在此期間混凝上的彈性模量變化不大。
(3)晚期:混凝土完全冷卻以后的運轉時期。溫度應力主要是外界氣溫變化所引起,這些應力與前兩種的殘余應力相迭加。
3 根據溫度應力引起的原因可分為兩類:
(1)自生應力:邊界上沒有任何約束或完全靜止的結構,如果內部溫度是非線性分布的,由于結構本身互相約束而出現的溫度應力。例如,橋梁墩身,結構尺寸相對較大,混凝土冷卻時表面溫度低,內部溫度高,在表面出現拉應力,在中間出現壓應力。
(2)約束應力:結構的全部或部分邊界受到外界的約束,不能自由變形而引起的應力。如箱梁頂板混凝土和護欄混凝土。
4 溫度的控制和防止裂縫的措施
(1)采用改善骨料級配,用干硬性混凝土,摻混合料,加引氣劑或塑化劑等措施以減少混凝土中的水泥用量。
(2)拌合混凝土時加水或用水將碎石冷卻以降低混凝土的澆筑溫度。
(3)熱天澆筑混凝土時減少澆筑厚度,利用澆筑層面散熱。
(4)在混凝土中埋設水管,通入冷水降溫。
(5)規定合理的拆模時間,氣溫驟降時進行表面保溫,以免混凝土表面發生急劇的溫度梯度。
(6)施工中長期暴露的混凝土澆筑塊表面或薄壁結構,在寒冷季節采取保溫措施。
在混凝土的施工中,為了提高模板的周轉率,往往要求新澆筑的混凝土盡早拆模。當混凝土溫度高于氣溫時應適當考慮拆模時間,以免引起混凝土表面的早期裂縫。新澆筑早期拆模,在表面引起很大的拉應力,出現“溫度沖擊”現象。在混凝土澆筑初期,由于水化熱的散發,表面引起相當大的拉應力,此時表面溫度亦較氣溫為高,此時拆除模板,表面溫度驟降,必然引起溫度梯度,從而在表面附加一拉應力,與水化熱應力迭加,再加上混凝土干縮,表面的拉應力達到很大的數值,就有導致裂縫的危險,但如果在拆除模板后及時在表面覆蓋一輕型保溫材料,如泡沫海棉等,對于防止混凝土表面產生過大的拉應力,具有顯著的效果。
加筋對大體積混凝土的溫度應力影響很小,因為大體積混凝土的含筋率極低。只是對一般鋼筋混凝土有影響。在溫度不太高及應力低于屈服極限的條件下,鋼的各項性能是穩定的,而與應力狀態、時間及溫度無關。鋼的線脹系數與混凝土線脹系數相差很小,在溫度變化時兩者間只發生很小的內應力。由于鋼的彈性模量為混凝土彈性模量的7~15倍,當內混凝土應力達到抗拉強度而開裂時,鋼筋的應力將不超過100~200kg/cm2..因此,在混凝土中想要利用鋼筋來防止細小裂縫的出現很困難。但加筋后結構內的裂縫一般就變得數目多、間距小、寬度與深度較小了。而且如果鋼筋的直徑細而間距密時,對提高混凝土抗裂性的效果較好。混凝土和鋼筋混凝土結構的表面常常會發生細而淺的裂縫,其中大多數屬于干縮裂縫。雖然這種裂縫一般都較淺,但它對結構的強度和耐久性仍有一定的影響。
5 使用外加劑也是減少開裂的措施之一
(1)混凝土中存在大量毛細孔道,水蒸發后毛細管中產生毛細管張力,使混凝土干縮變形。增大毛細孔徑可降低毛細管表面張力,但會使混凝土強度降低。這個表面張力理論早在六十年代就已被國際上所確認。
(2)水灰比是影響混凝土收縮的重要因素,使用減水防裂劑可使混凝土用水量減少25%。
(3)水泥用量也是混凝土收縮率的重要因素,摻加減水防裂劑的混凝土在保持混凝土強度的條件下可減少15%的水泥用量,其體積用增加骨料用量來補充。
(4)減水防裂劑可以改善水泥漿的稠度,減少混凝土泌水,減少沉縮變形。
(5)提高水泥漿與骨料的粘結力,提高的混凝土抗裂性能。
(6)混凝土在收縮時受到約束產生拉應力,當拉應力大于混凝土抗拉強度時裂縫就會產生。減水防裂劑可有效的提高的混凝土抗拉強度,大幅提高混凝土的抗裂性能。
(7)摻加外加劑可使混凝土密實性好,可有效地提高混凝土的抗碳化性,減少碳化收縮。
(8)摻減水防裂劑后混凝土緩凝時間適當,在有效防止水泥迅速水化放熱基礎上,避免因水泥長期不凝而帶來的塑性收縮增加。
(9)摻外加劑混凝土和易性好,表面易摸平,形成微膜,減少水分蒸發,減少干燥收縮。
許多外加劑都有緩凝、增加和易性、改善塑性的功能,我們在工程實踐中應多進行這方面的實驗對比和研究,比單純的靠改善外部條件,可能會更加簡捷、經濟。
6 混凝土的早期養護
從溫度應力觀點出發,保溫應達到下述要求:
(1)防止混凝土內外溫度差及混凝土表面梯度,防止表面裂縫。
中圖分類號:TU37文獻標識碼:A 文章編號:
隨著我國國民經濟的發展,我國建筑業施工技術取得了巨大的進步,建筑規模不斷的擴大,大型的現代化施工實施、大型建筑物,以及重載的大工程與日俱增,大體積混凝土結構因其本身的剛度大、承載性強、施工方便等特點成為了建筑公司的主要建筑材料,大體積混凝土是大型工程項目的主要設施和構筑物的主體,對于混凝土在澆筑的過程中,由于受熱不均,水化熱的現象等,造成混凝土的體積變形,出現裂縫,裂縫的出現對于建筑物的美觀、耐久性和整體性以及結構的承載力等都有較大的影響,因此,在建筑施工中大體積混凝土的溫控和裂縫的控制是人們倍加關注的問題。
一、 大體積混凝土的概述
1、 大體積混凝土的定義
到目前為止,建筑行業尚沒有為大體積混凝土提出明確的定義,大體積混凝土顧名思義是尺寸較大的混凝土,美國的混凝土學會給大體積混凝土下了定義:任何現澆混凝土,其尺寸達到必須解決水化熱及隨之引起的體積變形問題,以最大限度的減少開裂硬性的。
2、 大體積混凝土的特點
大體積混凝土的特點是結構厚實,混凝土量大,工程的條件較為復雜,一般采用的是地下現澆鋼筋混凝土結構,施工技術要求較高,水泥水化熱釋放比較集中,內部升溫比較快,混凝土的溫差較大時,使得混凝土產生溫度裂縫,影響結構安全和正常使用。
大體積混凝土是融合了鋼筋混凝土和預應力混凝土的優點,所以在我國大型的土建工程中大體積混凝土得到了普遍的使用,盡管其最大限度的減少了開裂現象,但是它的開裂問題依然存在,因此要對大體積混凝土采用有效的措施。
二、 大體積混凝土的裂縫的分類
大體積混凝土出現的裂縫的主要的原因就是溫差引起的,裂縫按照深度的不同可以分為貫穿裂縫、深層裂縫和表面裂縫三種。其中貫穿裂縫是由混凝土表面裂縫發展為深層裂縫,最終形成貫穿裂縫,它切斷了結構的斷面,對于機構的整體性和穩定性有一定的破壞作用,危害較為嚴重;而深層裂縫部分地切斷了結構斷面,也會產生一定的危害;表面裂縫一般的危害是比較小的。大體積混凝土施工階段所產生的溫度裂縫,一方面是混凝土內部因素:由于內外溫差而產生的;另一方面是混凝土的外部因素:結構的外部約束和混凝土各質點間的約束,阻止混凝土收縮變形,混凝土抗壓強度較大,但受拉力卻很小,所以溫度應力一旦超過混凝土能承受的抗拉強度時,即會出現裂縫
三、 大體積混凝土裂縫產生的最主要的原因
大體積混凝土的開裂主要是由于溫差造成的。首先,在混凝土澆筑的初期,會產生大量的水化熱現象,由于混凝土本身是熱的不良導體,水化熱現象的發生會聚集在混凝土的內部而不會輕易的散發出來,混凝土內部的溫度會逐漸的升高,而在混凝土的外表的溫度就是正常的大氣溫度,這樣就形成了混凝土內外的溫度差,而在混凝土凝結的初期抗壓力比較弱,而溫差在混凝土內部引起的拉應力較強,從而導致了大體積混凝土裂縫的出現;其次,在混凝土完全的凝結以后,要把外面固定混凝土的模具拆除,在拆模的前后表面的溫度會出現驟降的情況,這樣會出現溫度差,造成混凝土的開裂;最后在混凝土內部溫度達到最高時,由于外部還是標準的大氣溫度,因此溫度會隨著時間的推移而逐漸的散發而達到最低的溫度,這樣和以前的最高溫度相比,在混凝土的內部就形成了一個溫度差,造成混凝土出現裂縫。
四、 建筑施工中大體積混凝土的主要溫控技術
1、 合理的控制水泥水化熱溫度
合理的控制水泥水化熱的溫度是對混凝土實施溫控的一個重要技術,在水泥的選用上要盡量使用低熱或是中熱的水泥配制混凝土;在水泥中滲加粉煤灰等滲和料或是滲加減水劑等用來改善水泥的和易性、降低水泥的水灰比,從而控制水泥的塌落度,降低水化熱的現象;此外,在水泥和混凝土配置的過程中,預埋一個冷卻水管,通入循環冷卻水,從而降低配置好的混凝土的水化熱溫度,而在一些厚大的混凝土中,要摻入百分二十以下的塊石進行吸熱,從而達到節省混凝土的目的。
2、降低混凝土澆筑入模的溫度
對大體積混凝土進行澆注入模的過程中,要盡量的避開夏季等溫度較高的天氣,而是選擇溫度較低的季節里進行澆注混凝土,對于澆筑量不大的塊體,最好安排在下午三點以后或是夜間進行;如果由于工期的限制混凝土的澆筑在夏季,要選用低溫水或是使用冰水配制混凝土,對骨料通過噴冷水經行降溫,在運輸中要加蓋遮陽,從而降低混凝土拌合物的溫度。
五、 建筑施工中大體積混凝土的主要裂縫控制措施
1、 原材料選擇的控制
在原材料的購置上采用由預制混凝土供應商為主,項目部為輔的控制方式;混凝土攪拌單位應該和項目部簽訂合同,嚴格的執行相關的規范,混凝土攪拌單位應該根據混凝土性能決定用于制造工程中混凝土的原材料,保證工程所用的一切材料、設備、設施和技術復核所規定的種類標準。
2、 加入適量的添加劑
在混凝土中加入外加劑能夠減少其收縮開裂的次數,其中減水劑能夠起到改善混凝土的和易性、降低水灰比、提高混凝土的強度等作用,在混凝土中加入減水劑能夠有效的防止其開裂的機會;引氣劑在混凝土中的主要作用是改善混凝土的和易性、可泵性,提高混凝土的耐久性,因此在混凝土中加入引氣劑能夠防止混凝土裂縫在較短時間內出現。
3、 混凝土的澆筑控制措施
對于建筑物底板的大體積混凝土采用的是斜面式分層澆筑,利用自然流淌形成的斜坡,由遠到近,自上而下的逐層沿著混凝土的流淌方向進行連續的澆筑,并且采用減小澆筑層的厚度和采用合理的澆筑順序,來加快混凝土在凝結初期的水泥水化熱的散失,進而有效的降低混凝土中心溫度。避免混凝土因為受熱不均或是溫度下降過快而出現裂縫。
六、 總結
在建筑施工中,大體積混凝土的使用盡管最大限度的降低了裂縫的出現,但是由于混凝土的本身的特性,裂縫的出現依舊是無法避免的,只有對大體積混凝土在原材料的配置,澆筑,攪拌的過程中進行合理的溫度控制,才能做到有效的降低裂縫的出現,從而提高建筑結構的安全性,實現建筑物的使用功能。
參考文獻: