時間:2023-03-02 15:07:22
序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇信號通信論文范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!
在眾多的通信技術中,擴頻通信技術由于具有獨特的抗干擾能力以及寬的使用頻帶而在軍事通信領域倍受青睞。根據擴頻通信調制方式的不同,它可以分為直接序列擴頻方式(DS)、跳頻方式(FH)、跳時方式(FT)及兼有以上方式中二種以上的混合方式。其中跳頻通信具有保密性好、不易受遠近干擾和多徑干擾的影響等優點,是一種很有前景的通信方式。跳頻系統的頻率跳變,受到偽隨機碼的控制。不同的時間、不同的偽碼相位,頻率合成器產生的相應頻率也不同。把跳頻系統的頻率跳變規律稱為跳頻圖案。跳頻圖案是時間和頻率的函數,故又稱為時間-頻率矩陣,簡稱時頻矩陣。時頻矩陣可直觀描述出頻率跳變規律,如圖1所示。
跳頻圖案的設計是跳頻通信系統的一個關鍵問題,直接影響到跳頻系統的保密、抗干擾、多址等性能。一般要求跳頻圖案的周期要長,這就要求控制跳頻圖案的偽隨機碼周期要長,即移位寄存器的級數要大。
1基于FPGA和DDS技術的跳頻信號源設計
跳頻信號源即為載波頻率按照一定跳頻圖案跳變的信號發生器。設計一個性能優異的跳頻信號源,困難在于其優良的頻譜性能。筆者提出了一種基于FPGA12和DDS技術的跳頻圖案的設計方案。指標如下:600跳/秒跳速;20個跳頻點;3.4MHz跳頻基帶;68MHz跳頻帶寬;106.78MHz~172.14MHz跳頻頻率中20個頻點。DDS采用AD公司的最新頻率合成器件AD9852,寫頻率控制字采用ALTARA公司的可編程邏輯器件APEX20K系列中的EP20K100,其邏輯資源為10萬門,兩者通過40針總線接口相連3。其中,FPGA完成存儲頻率控制字、定時寫入頻率控制字的功能,AD9852則實現頻率合成輸出。頻率合成器DDS是跳頻信號源中的一個關鍵部件,其原理如圖2所示。這種頻率合成器工作頻率高,可達GHz數量級;分辨率高,可達1Hz以下,穩定度高;體積小,重量輕,集成度高,這些都是其他頻率合成器件難以比擬的。AD9852是近年推出的高速芯片,具有小型的80管腳表貼封裝形式,其時鐘頻率為300MHz,并帶有兩個12位高速正交D/A轉換器、兩個48位可編程頻率寄存器、兩個14位可編程相位移位寄存器、12位幅度調制器和可編程的波形開關鍵功能,并有單路FSK和BPSK數據接口,易產生單路線性或非線性調頻信號。當采用標準時鐘源時,AD9852可產生高穩定的頻率、相位、幅度可編程的正、余弦輸出,可用作捷變頻本地振蕩器和各種波形產生器。AD9852提供了48位的頻率分辨率,相位量化到14位,保證了極高頻率分辨率和相位分辯率,極好的動態性能。其頻率轉換速度可達每秒100×106個頻率點。在高速時鐘產生器應用中,可采用外接300MHz時鐘或外接低頻時鐘倍頻兩種方式,給電路板帶來了極大的方便,同時也避免了采用高頻時鐘帶來的問題。在AD9852芯片內部時鐘輸入端有4~20倍可編程參考時鐘鎖相倍頻電路,外部只需輸入一低頻參考時鐘60MHz,通過AD9852芯片內部的倍頻即可獲得300MHz內部時鐘。300MHz的外部時鐘也可以采用單端或差分輸入方式直接作為時鐘源。AD9852采用+3.3V供電,降低了器件的功耗。工作溫度范圍在-40°C~+85°C。
本文采用AD9852所設計的頻率合成器結構如圖3所示。DDS模塊分成二路輸出:(1)第一路輸出
100MHz~150MHz信號;(2)第二路輸出150MHz~200MHz信號。其中DDS輸出12.5MHz~25MHz的信號,經SWCON開關分成兩路輸出,一路輸出12.5MHz~18.75MHz信號,經放大倍頻、濾波,輸出100MHz~150MHz信號;另一路輸出18.75MHz~25MHz的信號經放大倍頻、濾波輸出150MHz~200MHz信號。
2FPGA與DDS接口設計
FPGA主要完成從外部向DDS寫入頻率控制字功能,其中頻率控制字存儲在FPGA內部RAM單元中。雙方通過40針總線連接,其中信號線為:8位數據線、6位地址線、復位信號、updateclk(頻率跳變信號)、swcon(開關:高頻段和低頻段轉換信號,當swcon為低時輸出高頻段,當swcon為高時,輸出低頻段)、wr(寫信號)。
作者:王偉何濤強生杰單位:蘭州交通大學
數據輸入后先轉化成ASCII二進制碼進行傳輸,通過調用m序列生成函數進行相加,產生擴展后的數據,然后將擴頻碼轉換為BPSK(1,-1)序列,數據傳輸時進一步將BPSK雙極性轉換到單極性,最終在數據輸出端進行m序列解擴,再結合解調過程將ASCII二進制碼轉換為輸出數據。從圖3(b)中可以看出數據展寬后可以明顯降低信號功率密度,調制后傳輸的信號和白噪聲具有很大的相似度,可以實現高隱蔽性傳輸。從圖3(c)和圖3(d)對調制信號包絡,相干載波相位模糊度及其對解調數據的影響等性能對比,得出BPSK調制出傳輸過程中具有高的抗干擾能力和頻譜利用率。最終解擴和解調后的輸出數據(e)和輸入數據圖3(a)具有高度的一致性,可見此擴頻方式具有很強的抗干擾性。
理論優勢(1)抗干擾能力強。直接擴頻通信系統中,解擴器端輸入與輸出信號功率保持不變,而對于干擾信號解擴過程相當于進行擴頻,干擾功率被擴展到很寬的頻帶上,功率譜密度下降,這使得解擴過程中輸入端的干擾信號功率大大降低。通過帶通濾波器的濾波,大部分的干擾信號被濾除,有用信號則被保留。另外,擴頻系統對各種惡劣天氣時通信鏈路造成的影響進行抵抗,與傳統微波相比可以進行跨江傳輸,在海面的長距離優質傳輸。這些優勢適用于鐵路系統在復雜環境下安全可靠的進行信號傳輸。(2)可以實現多址通信系統。多個通信在信息發送端和接收端使用相同的偽隨機序列,而不同的通信則使用不同的偽隨機序列,這樣就實現了在相同載頻下互不干擾的通信,實現頻率復用,從而充分利用了頻譜資源。由此可以進行機動靈活組網,有助于統一規劃,分期實施,便于擴充容量,有效地保護前期投資。(3)有效抗多徑干擾。在直接擴頻通信系統接收到電波后,將同步鎖定直達路徑且信號最強的電波,其余電波由于非直達,會延時到達,在相關解擴作用下只作為噪聲。另外,接收端把多路徑來的同一碼序波形相加使之得到加強,從而實現抗多徑干擾。(4)隱蔽性強,對其它系統干擾小。擴頻過程單位面積信號發送功率極低,隱蔽性強。低的功率譜密度,不容易被探測到,被截獲的可能性降低,所以實現了其安全性方面的要求。同時,低功率譜密度讓發射信號近似于噪聲信號,而擴頻信號可以在信道噪聲和白噪聲背景中傳輸,降低了對其它系統的干擾,增強了與其它系統的共存度。由于此系統的無線鐵路信號傳輸過程中電磁干擾大幅度降低,不僅有利于將擴頻通信系統應用于電氣化鐵路區段和弱場強區電磁環境,而且適于將其大規模應用到干線鐵路中。(5)精確測距和定時。將應用周期長及偽隨機碼作為傳輸信號,比較從目的地反射回來的偽隨機序列與原序列的相位,就可以得出時間差,由此也可實現定時操作,進一步利用傳輸速率和時間差的相乘即得出距離。相對于傳統的軌道電路定位,擴頻通信系統傳輸容量較大并且適合長距離傳輸,這有助于減少鐵路測距定時設備,降低設備投資,便于維護。也可以作為原有測距定時設備的冗余,與原測距設備值進行比較,提高測距定時的安全可靠度。
擴頻通信屬于數字通信,是適合大容量高速率通信的系統,其加密功能和保密性,從一定程度上提高了鐵路信息傳輸的安全可靠性。擴頻通信系統容易實現碼分多址,結合計算機及網路技術有助于鐵路系統更快速的應用高新技術,從而使鐵路系統向更加安全高效發展。另外,現有的擴頻通信系統絕大部分使用的是數字電路,設備集成度高,安裝簡便,易于維護,更小巧可靠,擴展容易,平均無故障率時間也很長。目前,廣州地鐵和北京地鐵等多個軌道交通項目中均采用了基于直接序列擴頻技術的無線移動閉塞信號系統,為今后大規模成功應用于干線鐵路提供了參考。
在實際消耗中不難發現,變壓器能源占總消耗量的比例比較大,值得一提的是電能損耗還分為兩種形式進行:空載損耗和負載損耗兩種,因此,在選用變壓器過程中應當綜合考慮各方面因素,從容量和負荷率等角度予以考慮,確保選用的變壓器符合機房實際情況。
1.2優化直流電源系統
在通信機房中可以通過更換開關電源設備的方式,在增加容量的同時能夠減少電源體積,智能化程度的提高直接作用于工作效率,一定程度上還能夠提升工作人員的積極性,使其全身心的投入到工作過程中。再者,對開關等設備進行改造過程中要依據實際情況,例如:電源的容量配置設置上一定要大于負載容量,這樣能夠確保系統正常隱形,相反,其設定值若小于負載容量比較容易出現發熱情況,嚴重時損壞設備,通過優化電源直流系統,既能夠減少能源損耗,從某種意義上還能夠降低通信機房的投資。
2空調系統的節能損耗
實現空調節能的最主要途徑在于靈活利用外部因素,正確處理好結構和空調設備兩者間的關系,只有以這個為前提條件,才能夠制定出行之有效的節能方案。在相關測試中發現,夏季室內低于或者冬季室溫高于1度,工程投資會在原有的基礎之上增加6個百分點,能源損耗增加8個百分點,采取加大室內外溫差的方式則不科學。因此在空調安裝過程中,首先要進行合理規劃,要保證其有足夠的散熱空間,盡可能避免陽光照射,冷熱負荷要均勻處理,這樣能夠減少不必要的浪費。值得一提的是,通過霧化水來沖擊空調,既能夠達到清洗空調的目的,還能幫助空調散熱和節能。再者,對中央空調的變頻改造可以采取多種方式,但是科學合理的方式是改變壓縮機的供電頻率,從而控制室溫。盡管變頻器其主要功能是改變供電的頻率,但是在特定條件下其也能調節壓縮機的正常轉速,從深層次上來說能夠降低設備損壞的機率。值得一提的是,通信機房內的新風系統在特定條件下能夠將空氣轉化為冷源,然后將機房內的熱量與冷源對調,在降溫的同時也在散熱。其不僅僅散熱、降溫效果顯著,電能損耗也直線下降。任何事物都具有兩面性,新風系統也不例外,采用此種方式進行改造不能夠對室外的空氣進行凈化處理,因此在互換過程中難免會吸入護城,影響了設備的清潔度,采用新風系統對環境要求比較高,必須滿足機房內部溫度不小于5度這個前提條件,倘若不具備這個條件,相關工作就不能夠正常進行。
3分析機房節能的評估機制
節能效果的評估應當在各方面都得到保障情況下,深層次了解造成能源消耗巨大的原因,根據實際情況找到節能改造的切入點,以此為前提條件從而得到估算能源節約量。但是就我國目前形勢來看,我國的能源計量管理體制尚需建立健全,因此很多企業或者組織只是簡單的通過電表實施管理。倘若要開展效果評估,其首要任務就是更換電表,采用比較先進的技術設備,針對機房各個部件的能源消耗進行詳細記錄并整理,為制定行之有效的節能方案提供堅實理論依據。節能效果并不是通過仿真實驗就能夠得到相對準確的數據,它受外界因素影響比較大,因此必須依據現場實際情況進行,否則出現評估誤差的機率比較大。新形勢下,比較常用的是國際節能效果和測量認證規程IPMEP,其主要是綜合考慮各種因素,其設計的初衷和目的就是研究節能技術服務公司和接收服務方如何根據自身實際情況量化節能措施,以此為節能效益提供科學性指導。實際上,考慮到通信機房節能其主要是通過有效手段降低電能消耗和減少設備損壞,參照IPMER規程能夠得到一個相對準確的數據。正確處理好年節能量、節能效率、單位能耗、用能效益相互之間的關系,其中年節能量主要是傳遞出具體節能的信息,節能效率指標則是節約能源占總消耗的比例。立足整體,從價值的角度出發年度純收益和能耗兩者間比例的不同,也是節能效果的反映,在不考慮外在因素的前提下,用能效益提高節能效果也就越加明顯,四個指標之間相互作用,它們從不同角度出發詮釋了節能效果,總體來說科學合理性高。
城市軌道(簡稱城軌)交通區間信號系統是安全性苛求系統。在區間安全性控制和防護設備的研制、生產、使用過程中,運用現代技術手段對設備的可靠性和安全性進行科學、高效、全面、按標準的檢測和評估,以取代目前國內主要依靠專家經驗進行的手工測試和實際線路試運行的非完善的方法,是十分迫切和必需的。在我國城市軌道交通領域,這方面的研究尚處于起步階段。本文的研究正是基于這一背景。文中所建測試平臺對城際鐵路同樣適用。
1區間信號系統測試平臺的結構
城軌交通區間信號系統測試評估平臺(以下簡稱平臺)硬件采用分布式結構,如圖1所示。平臺由主控機、數據庫機和仿真機組成[1]。被測系統通過網絡與平臺互聯。網絡通信采用TCP/IP協議。
圖1平臺分布式硬件結構示意圖
平臺軟件系統結構框圖如圖2所示。其中:主控及測試案例自動生成子系統一方面向仿真子系統發送區間狀態的仿真設置命令,另一方面動態監控現場信號狀態等,實現測試案例的動態擴展和連續加載、測試結果的動態判定,并將測試結果存入數據
圖2區間信號測試系統的軟件結構庫。傳輸信道仿真及區間現場仿真子系統為被測系統提供了一個模擬的傳輸仿真及現場環境。數據采集與處理子系統在被測系統與仿真信道之間進行數據處理及轉換。測試用基礎數據生成子系統通過讀取區間拓撲數據文件,生成區間測試用基礎數據。專用數據庫子系統負責存儲各種測試用基礎數據和測試結果。本文重點闡述平臺專用數據庫子系統的研究與實現。
2平臺專用數據庫設計
平臺的數據庫不僅是一般意義上的數據庫應用,它還負責協調各個子系統之間的數據聯系。平臺數據的類型與結構在一定程度上反映了整個平臺的測試水平?;趯ζ脚_數據以及平臺分布式結構的考慮,經過深入的比較,選擇SQLServer作為平臺的數據庫開發工具。數據庫設計一般分為四步:需求分析、概念設計、邏輯設計和物理設計。應用數據庫設計理論,平臺專用數據庫設計的具體步驟如圖3所示。
圖3數據庫的設計過程
2.1需求分析
平臺的數據按其對時效性的不同要求可以分為動態數據和靜態數據兩大類[2]。動態數據是指具有嚴格時效性的數據,并且隨著時間推移而動態刷新;靜態數據則指相對穩定,不隨時間變化的數據。
2.1.1動態數據及其傳輸
平臺動態數據是維持平臺正常運行的基礎,主要包括下列3類數據:
·列車運行仿真命令、故障及干擾仿真命令。由主控機發出,用于控制仿真子系統進行相應仿真活動。
·區間信號設備狀態及動作信息。指仿真機所模擬的實際區間信號設備的狀態(如軌道區段是否有車占用等),主控機采集這些信息用于動態判定及顯示測試過程的實際狀態。
·測試結果信息。平臺的測試結果記錄是一種比較特殊的動態數據,包括經信道傳輸前后的實時電信號(數據)。它們是評價被測系統的重要依據,必須完整、正確地記錄。
動態數據傳輸首先必須滿足實時性要求,當不能及時傳送時,根據數據特性的不同,或丟棄,或重發。例如被測系統發送的數據如不能及時傳送,或數據有誤,則該數據必須丟棄。主控機發給仿真子系統的故障及干擾仿真命令、列車運行仿真命令,在網絡傳輸出現差錯的情況下,為了確保命令被正確執行,必須重發。
2.1.2靜態數據及其復制
生成和校驗正確后的靜態數據,在平臺對被測系統進行測試的過程中不再變化,具有相對的穩定性。同樣需要對靜態數據進行存儲、查詢、校驗和修改等操作。平臺靜態數據可分為以下幾類:
·信號設備數據。記錄發送端、接收端、閉塞分區的排序序列號與設備名稱之間的映射關系,設備的一些屬性特征。例如:閉塞分區的編號、名稱、位置、長度,道岔的編號、名稱、位置、類型等。
·基本數據。包括區間基本特征、鋼軌線路的一次參數、鋼軌線路四端網參數、列車運行線路等重要數據。其中區間基本特征數據包括閉塞制式、軌道電路類型、道碴與枕軌類型、坡度、曲線及長度等。列車運行線路數據包括線路運行方向、經由閉塞分區編號、經由發送端、接收端編號。
·區間現場拓撲數據。包括閉塞分區、發送端、接收端的位置和相互關系。這種描述有兩方面用途,一方面用于現場仿真的動態顯示,另一方面是作為測試用基礎數據生成的原始依據。靜態數據的復制是通過開放式數據庫互連(ODBC)機制實現的。
2.2概念設計
在數據庫設計中,筆者使用實體-聯系(ER)模型作為概念設計的工具,得到概念設計的E-R圖。E-R圖由實體、聯系和屬性3個基本成分組成。測試用基礎數據所處理的基本實體是城市軌道交通區間的信號設備:接收端、發送端、閉塞分區;設備之間的關系也就是最直接的實體間聯系。通過E-R圖,可以十分清楚地描述測試用基礎數據的結構。圖4為列車運行線路數據的E-R圖。
圖4列車運行線路ER圖
2.3邏輯設計
關系數據庫的邏輯設計過程是把概念設計的結果(如E-R圖)轉換成關系模式的過程。為了消除關系模式的存儲異常問題,需要對其進行規范化。
在本子系統數據庫模式的規范化設計過程中,既要考慮減少數據冗余、消除存儲異常情況,也要考慮現場仿真、主控等子系統讀取數據及運算的花費。規范化測試用基礎數據的關系子模式包括:發送端表、接收端表、閉塞分區表、列車運行線路表、區間基本特征表、鋼軌線路一次參數表、鋼軌線路四端網參數表等。
2.4物理設計
物理設計要根據具體的數據庫管理系統(DBMS)和相應的操作系統、計算機硬件所能支持的存儲結構、存取方法以及資源來進行設計。SQLServer提供索引或表鍵機制來幫助SQLServer優化對查詢的響應。在測試平臺上,對結果數據的查詢,是將記錄計數號與測試項目的組合作為索引。這是因為大多數的查詢都要直接或間接地將該兩項作為SQL語句中WHERE子句后的首列。
3平臺專用數據庫接口的實現
平臺采用客戶端/服務器體系,后臺數據庫服務器采用SQLServer,前臺應用程序開發工具采用VisualC++。前臺應用程序對數據庫的訪問是通過ODBC機制實現的。
VisualC++對ODBC提供了兩種支持:一種是API函數[3];另一種是對API函數進行封裝的MFCODBC類,包括CDatabase(數據庫類),CRecordSet(記錄集類)和CRecordView(可視記錄集類)。兩種方式在平臺上分別應用于不同的場合。
·ODBCAPI使客戶應用程序能夠從底層設置和控制數據庫,完成一些高層數據庫技術無法完成的功能。例如檢測數據庫是否連接、數據源配置是否正確等。
·MFCODBC類封裝了多種數據庫訪問功能,使用簡單方便。平臺專用數據庫定義了11個CRecord2Set類的子類,每一個子類對應專用數據庫中的一個表,例如,B-JSSet類對應接收端表,B-BSFQSet類對應閉塞分區表。
4結語
建立在SQLServer上的平臺專用數據庫要兼顧通用數據庫的設計要求和區間測試平臺的特殊性。只有綜合考慮這兩方面的因素,才能使專用數據庫既高效又安全。當然,隨著平臺水平的不斷提高,專用數據庫的功能必將隨之擴展,日趨完善。
參考文獻
屏蔽門(Platformscreendoors,簡稱PSD)系統是現代化軌道交通工程的必備設施,它沿軌道交通站臺邊緣設置,將軌道區與站臺候車區隔離,具有節能、環保和安全等功能。安裝屏蔽門系統后,不僅可以防止乘客跌落軌道而發生危險,確保乘客安全,減少人為引起的停車延誤,提高列車準點率,而且可以減少站臺區與軌道區之間冷熱氣流的交換,從而降低環控系統的運營能耗,節約運營成本。
信號系統與屏蔽門系統相結合是屏蔽門系統工程的重要環節。此外,要更好地確保乘客的安全以及奠定無人駕駛的技術基礎,就必須實現屏蔽門與列車車門的連動,并確保屏蔽門系統與信號系統的列車自動防護(ATP)之間建立聯鎖關系。根據世界各城市軌道交通工程的成功先例,屏蔽門普遍由信號系統進行控制。廣州于2004年10月開始對正在運營的地鐵1號線加裝屏蔽門系統。該項工程預計總投資金額為1.484億元人民幣,是目前我國最大的一項軌道交通屏蔽門系統工程。本文主要對廣州地鐵2號線及1號線加裝屏蔽門系統工程中的西門子信號系統與屏蔽門系統的接口進行分析。
1屏蔽門系統所需信號系統的條件及功能
(1)信號系統與屏蔽門系統的接口僅考慮線路上的列車的正向運行,但要滿足屏蔽門對停車精度的要求。只有停車精度要求被滿足,信號系統才允許自動或人工向列車和站臺屏蔽門系統發送開門命令。目前,用于廣州地鐵2號線的LZB700M型中,ATP和ATO(列車自動運行)系統是由德國西門子公司提供的,其列車定點停車的精度ATO系統為±0.3m,成功率99.99%,ATP系統為±0.5m,已滿足屏蔽門對停車精度的要求。廣州地鐵1號線同樣采用LZB700M型ATP、ATO,目前列車停車的精度ATO系統為±0.5m,成功率99.5%,ATP系統為±1m。由此可見,要安裝屏蔽門首先必須改善列車的停車狀況,停車精度至少要達到ATO系統為±0.4m,成功率99.5%,ATP系統為±0.5m的要求;并要保證在列車停車精度為±400mm情況下,列車乘客門凈開度≥1200mm(屏蔽門門開寬度為2000mm)。
(2)只有屏蔽門關閉的情況下列車才能運行。ATP軌旁單元通過故障安全型繼電器輸入接點接收當前屏蔽門的狀態(PSD開門或PSD關門)。如果屏蔽門是開門狀態,ATP軌旁單元會設置一個安全停車點,不讓任何列車駛入相應的車站站臺。
(3)PSD的狀態通過ATP報文傳輸給列車。當列車接近運營停車點,且屏蔽門的狀態由“PSD關閉”變化為“PSD開門”時,ATP軌旁單元會產生緊急制動讓列車停車。
(4)確保當列車停在停車窗位置范圍內時才連通列車到軌旁的通信通道。當列車在站臺范圍內移動時,ATP通過不激活“PTI(positivetrainidentification,有車標志)釋放”切斷PTI通道。如果列車停到指定的ATP停車窗位置時,則通過ATP激活“PTI釋放”讓PTI通道連通。當列車車門打開時,這些報文會通過PTI通道傳輸到軌旁單元,屏蔽門會隨之而打開。
(5)屏蔽門控制系統向信號系統提供全部門“關閉及鎖定”和“互鎖解除”信息,接口采用安全型干接點雙斷硬線連接,接口分界點在屏蔽門控制設備外的線端子排。
(6)列車在ATP停車窗范圍內停穩后,ATP車載單元會發出打開列車車門的信號。當列車車門打開,ATP車載單元一個持續的故障安全輸出則會切斷列車的牽引系統。這是為了防止列車在車門開啟的情況下人為地啟動列車。
(7)PTIMUX(PTItracksideunit)根據接收來的2個不同的PSD編碼(對應PSD開門的編碼)驅動2個繼電器輸出,它們是表示“PSD開門”命令的接口。為了產生一個持續的控制信號,ATO需不斷發送“PSD開門”命令,直到屏蔽門被請求關閉為止。
(8)如果列車車門關閉(人工或自動),屏蔽門也隨之關閉,這些報文會通過PTI通道傳輸到軌旁單元。目前廣州1、2號線列車只有人工關閉車門功能。
(9)ATP車載單元在關閉車門的同時,輸出關閉屏蔽門命令。只有收到列車車門關閉好,且通過ATP報文接收到屏蔽門的“關閉及鎖定狀態”信息后,列車牽引系統才被釋放,ATP才允許啟動列車。
(10)開左門或開右門應與站臺的位置和列車運行方向相符合。如在換乘站(如公園前站),屏蔽門的開關要根據有利于乘客導向的原則來進行設計:先開下客側的屏蔽門,后開上客側的屏蔽門。
(11)屏蔽門系統發生故障,或屏蔽門實際已關閉但因故不能有效地把“關閉及鎖定狀態”信號傳送給ATP系統時,司機只有按“PSD互鎖解除”按鈕,屏蔽門系統才能給ATP系統送出“互鎖解除”的信號,用以切斷屏蔽門系統和信號系統間的聯鎖關系,ATP才允許啟動列車。且司機必須在每次發車前都按下“PSD互鎖解除”按鈕,直到故障修復為止。
(12)屏蔽門系統應為每側站臺提供一組接口與信號系統連接,因此,島式站臺和側式站臺有兩組接口,一島兩側式站臺有四組接口(如公園前站)。
(13)由于廣州地鐵1、2號線的列車編組方式相同,在信號系統中沒有考慮采用不同的列車編組來開啟對應的屏蔽門。
2信號系統與屏蔽門系統的接口控制
2.1接口信號描述
信號系統與屏蔽門控制系統之間使用信號控制電纜連接,使用繼電、雙斷、安全型干接點等方式的接口電路。兩系統接口信號的描述見表1。
2.2ATP子系統對PSD打開狀態時的保護聯鎖設計
屏蔽門的狀態通過ATP報文傳輸給列車。ATP子系統在屏蔽門不同的打開情況下監督列車的移動,并最終控制列車導向安全。其出現的情況有圖1中給出的5種。
圖1中:情況1和2若PSD打開,軌旁ATP會生成一個安全停車點讓列車不能進入相應車站的站臺。在情況1中,當列車制動距離小于列車與安全停車點的接近距離時,列車實施正常制動讓列車在停車點前停車。而在情況2中,當列車制動距離大于列車與安全停車點的接近距離時,列車則要被實施緊急制動。在情況3中,列車在站臺區域移動,同時收到“PSD關閉”改變為“PSD開門”的信息時,車載ATP單元會產生一個緊急制動。同樣,在情況4中,車載ATP單元也會產生一個緊急制動,這是因為列車尾部還在站臺區域內。在情況5中,列車已出清站臺區域時PSD打開,這時列車不會產生緊急制動。通過上述的5種情況,確保在PSD打開的情況下禁止列車在站臺區段移動,防止危及乘客的安全。
2.3接口硬線連接的安全設計
簡單的故障會導致屏蔽門錯誤地開、關門,這是必須要防止的?,F說明接口故障的安全設計。
2.3.1PTIMUX和PSD控制器之間的繼電器盒
PTIMUX和PSD控制器之間采用繼電器進行隔離,防止電氣干擾影響信號系統。同時為提高安全性,接口電路采用4線雙切線路。一個正常的PSD命令是由4個PTIMUX輸出繼電器組合確定的,可以避免“PSD開門”和“PSD關門”兩個信號同時出現的錯誤。這些繼電器會安裝在PTIMUX上,通過復合的接點關系防止“PSD開門”和“PSD關門”命令的錯誤輸出。其原理見圖2。繼電器盒的繼電器輸出狀態與邏輯結果見表2。
通過其繼電器控制電路邏輯結果分析,16種繼電器可能的動作組合中,只有2種組合會產生正確的輸出(PSD開門和PSD關門)。這樣的設計也是為了防止繼電器失誤而產生錯誤的輸出命令。
2.3.2報文容錯
車載ATO通過PTI信標到PTI-MUX的整個傳輸通道的報文都有CRC(循環冗余碼校驗)進行校驗。另外,列車停在停車窗位置范圍時,整個PTI傳輸通道才連通,以確保其它情況下沒有任何的報文接收,影響到PSD的功能。
2.4兩側都有屏蔽門的設計
該情況是列車可以打開左側、右側或者同時都要打開兩側車門的情況。
這里使用了6個繼電器,其功能分別是:允許開門,允許關門,兩側門都開,開左門,開右門,關閉所有門。通過這6個繼電器的接點組合控制PSD的命令輸出:①開右側屏蔽門,允許開門和開右門的繼電器吸起;②開左側屏蔽門,允許開門和開左門的繼電器吸起;③開兩側屏蔽門,允許開門和兩側門都開的繼電器吸起;④關閉屏蔽門,允許關門和關閉所有門的繼電器吸起。繼電器的輸出狀態和邏輯結果見表3。
如表3所述,只有上述的情況會產生命令輸出,其它的組合是無效的。通過其繼電器的互鎖關系,確保不會因繼電器錯誤動作產生有效的屏蔽門控制命令。如在公園前站這個需要兩側開門的換乘站,在設計上要考慮屏蔽門對乘客的導向作用,兩側屏蔽門要先開下客門再開上客門,而關門時要先關下客門再關上客門。這就需要在車載軟件中設置兩側車門的開關延時時間。同樣兩側屏蔽門開關的時間也應作對應的設置。
2.5車門與屏蔽門的同步
屏蔽門和列車車門的開門時間,會在小于1s內同步啟動。屏蔽門和列車門關閉的時間應大致相同。同步要求的延誤,主要是因為啟動指令要從信號系統的車載設備傳送到信號系統的地面設備,傳送過程中會產生延誤。關門同步實現起來比較容易。列車車門及屏蔽門收到關門命令也不是立即關閉的,而是都有一個延時時間。根據實際情況各自確定一個關門的延時時間即可。
3結語
屏蔽門系統與信號系統的結合提高了屏蔽門的自動性和安全性,在保證列車和乘客安全,實現快速、高密度、有序運行等功能的同時,為乘客提供了一個舒適安全的乘車環境。通過了解信號系統與屏蔽門系統之間的控制與監督,就能更深入了解屏蔽門系統的運作過程。
參考文獻
近幾年來,全球移動通信產業蓬勃發展。2007年,全球移動用戶數增長了25.9%,2008年由于UMTS3G網絡的開通,用戶數增長了14%,2009年3G網絡的開通,用戶將向WiMAX網絡和4G網絡轉移。總之,全球移動市場仍處于快速增長期。通信產業是一個高科技行業,也是一個高耗能行業,隨著網絡規模的不斷擴張,通信網絡的核心設備、動力系統、冷卻系統以及機房、基站等成倍增加,能耗巨大,目前我國的通信網絡有上萬臺的核心交換設備,有幾十萬的基站,大量的設備不僅需要人員的支撐,而且不間斷的網絡環境也更需要能源來保障。據有關部門估計,2007年我國IT產品的總耗電預計為300億—500億千瓦時。這幾乎相當于三峽電站一年的發電總量(2006年為492.50億千瓦時)。這些林林總總的IT產品,已經讓我們的生活發生了翻天覆地的變化,改變著人們的生產和生活狀態,但是這些IT產品功耗大而且數量眾多,累積起來所消耗的電能可以說是觸目驚心。2008年世界金融風暴使得全球能源供給日趨緊張,2009年能源緊張的格局將會更加嚴峻,因此節能降耗的綠色通道對于通信行業來說顯得尤為重要。
由于IT設備需要成年累月不間斷地運行,除了IT設備自身耗電量巨大外,為滿足機房環境溫度、濕度、空氣含塵濃度的要求,機房內要獨立設置空調調節系統,加上用于機房環境條件技術保障的其他設備,這些最終導致機房成為電力消耗的“大戶”。從機房用電分配上來看,其中IT設備占電能總能耗的44%,制冷系統占38%,電源系統占到15%,照明系統占3%。在機房的IT設備中,網絡設備大概占30%,即大約占機房總能耗的13%。同時,如果網絡設備的功耗降低,相應的空調等設備的消耗也會相應降低,因此目前網絡中心耗能最大的是服務器,其次是一些主干網采用的大型網絡設備,當然其他低端網絡設備因為數量眾多也是不容忽視的。主設備是指服務器、BTS(基站收發臺),其功耗由接入設備的數量和網絡的負荷決定;配套設備主要指空調,基站設備對環境溫度、濕度和潔凈度有一定要求,以保證通信設備的正常運行,空調占了總功耗的絕大部分,平均下來約為總功耗的50%,以中國電信為例,2007年全年消耗電能超過200億度,各種能耗費用超過100億元人民幣;其它功耗成分來自配電系統等。
各國政府已經開始行動以減少能源的消耗、二氧化碳及其他污染物的排放,我國“十一五”規劃就明確了節能減排的工作指標:到2010年,單位國內生產總值能耗降低20%左右。能源的消耗可以用二氧化碳的排放量來計算,1千瓦時約等于0.658kg二氧化碳排放量,除主設備外其他設備的能源消耗也可以用二氧化碳的排放量來計算。假設一個正?;究墒褂?0年,總二氧化碳排放量為422噸。在所有的影響因素中,主設備占了總二氧化碳排放量的30.9%。根據對二氧化碳排放量的分析,通信產業節能降耗的綠色通道可以從以下5方面展開:1、打造綠色基站,采用新型的功放芯片和高效功放技術,提高設備的能效;2、應用綠色基站軟件有效降低靜態功耗,大幅降低業務量少時的能耗。3、綠色高效的冷卻方案,即減少冷卻能耗和提高電信設備耐熱能力,這樣設備可工作在室溫或更大濕度環境中。4、使用高集成度或分布式方案來減少基站占用空間,即采用多密度載波和射頻寬帶技術實現單模塊支持4到6個載波,同等容量下基站體積更小,重量更輕,UPS等配套要求更低。5、綠色能源的使用,即充分利用太陽能和風能等綠色環保能源。
一、建立綠色核心網絡
從這么多年從事通信網絡設計工作的經驗中,筆者了解到傳統的核心網絡架構是相當復雜的,不僅一二級核心網絡層次多,而且大量的網元導致網絡復雜,整網能耗偏高。以筆者設計的機房為例:機房空間有限,服務器的能耗非常高,導致散熱程度差,而且需要加裝空調,再加上每年擴容的需要,交換機走線和設備布局的不合理,使機房無法實施更進一步的節能降耗措施。因此建立綠色核心網絡勢在必行。建立綠色核心網絡首先應該優化核心網絡架構,實行網絡的扁平化管理,減少核心網中網元的數量,使核心設備上移,逐步使用集成度高,電信級別的平臺代替傳統的服務器,同時建立專業的機房散熱管理方案,如采用自下而上的回風流方式提高冷風的利用率,尤其是在北方城市,這樣就可以有效減少機房空調的使用。
筆者還要強調一下,在工程前期調研及初設階段首先考慮選擇擁有綠色基站技術的供應商和運營商,例如華為和Vodafone。他們擁有IP組網、分布式基站、先進功放、智能電源管理、多載頻技術、統一架構等關鍵綠色技術。這樣設計的基站穩定性、可靠性高,功耗能夠得到進一步優化,而且更有利于網絡的平穩升級。
二、充分利用軟件技術降低能耗
除提高設計水平和利用硬件升級等手段降低能耗以外,充分利用軟件技術實現節能降耗也越來越重要。隨著軟件技術的飛速發展,其應用領域也越來越廣泛,大到網絡轉型,小到CPU超頻。以筆者所在單位為例,通信網絡轉型的速度遠遠高于其他單位基礎設施的更新換代,如果頻繁地對網絡轉型,將造成大量在線設備的退網淘汰以及更多的資源消耗,那么利用軟件技術提高現有網絡設備的工作效率,從而降低能耗也是非常重要的手段。通過對上網用戶在線時間的統計分析,全網在忙時和閑時網絡負荷變換最大,那么就可以通過軟件調整核心網絡設備的主頻,讓它隨網絡負荷變化,在閑時自動將設備處理能力降低,減少電能的消耗。
三、提高空間利用率降低設備冗余度
隨著通信產業的蓬勃發展,每年入網用戶日益增多,基站和設備間能夠利用的空間越來越小,設備密度也越來越大,電力消耗明顯提高,因此采用高集成度或分布式設計方案來減少基站和設備間的空間占用,使用體積更小,重量更輕,支持端口更多的設備來有效降低設備冗余度,對于降低能耗也是重要的綠色手段。對于高端網絡設備來講,性能和功能無疑是最重要的,功耗降低會以性能的降低為代價。一般的情況下,為保證功能、性能、業務卡的數量和運行可靠,設備的功耗也會較大。這類設備數量較少,放置位置的環境情況也比較好。因此,在選擇高端設備方面我們只是把功耗指標作為一個輔助的參考指標。
對于低端的網絡產品,如數量巨大的接入層交換機,雖然他們的功能都很強大,但是我們實際應用時只會用到它的部分功能,完全可以通過犧牲一些我們不需要的性能來換取設備的功耗降低?,F在有一些接入層交換機因為自身功耗小,已經實現了設備內部無風扇,這類產品就能很好地降低設備的功耗。對于低端網絡設備來說,采購過程中會把功耗作為一個比較重要的指標來考慮。
四、推崇綠色環保能源的使用
利用太陽能和風能等混合能源,可更好地保護環境,減少污染物排放。在有條件的地區充分利用太陽能、風能作為輔助能源,降低電能消耗,分解能源問題。在北方城市,利用季節明顯,冬季日夜溫差較大的特點,優化基站、核心機房、設備間的通風設計方案和溫度控制方案,充分利用自然環境溫度實現溫控的目的,減少冷卻系統和大功率空調的使用,降低能耗,建立更多能源使用的綠色通道,使能源利用率更高。
為了使通信產業向著更加綠色的方向發展,節能降耗勢在必行,讓我們共同努力,打造出更多的綠色通道,從技術上提高設備、能源的使用效率,減少不必要的損耗,以實際行動來保護環境,推動通信產業持續健康發展。
2系統組成
系統是由標準源(Fluke5520A多功能校準源/3010多功能校準源/Fluke525A溫度校準源/CBA-2310A應變校準器)、標準表(Agilent34970A數據采集表/Agilent34401A數字多用表)、轉換開關(Keithley7001程控轉換開關)、供電電源(Agi鄄lentE3634A直流電源)、被校隔離信號調理模塊(模塊+載板)、接口卡(Agilent82357A接口卡)及接口電纜、計算機及自動校準軟件組成,如圖1所示。
3系統校準
原理系統連接如圖1所示,通過USB/GPIB接口卡和GPIB電纜將計算機與標準校準源、程控轉換開關、標準數據采集表及直流電源連接起來,并將標準校準源的信號輸出端通過程控轉換開關與各被校模塊的信號輸入端連接,各被校模塊的信號輸出端與標準數據采集表的各信號輸入端連接,直流電源的輸出端與被校模塊載板的供電電源端連接。通過計算機及校準軟件程控直流電源輸出直流電壓提供給被校模塊直流供電電壓,再通過程控標準校準源發送標準信號,同時程控多路轉換開關進行信號各路自動切換及程控標準數據采集表測試對應各被校模塊的輸出值,自動進行數據處理及存檔,并自動形成報告,從而實現多路全自動校準。當然,在沒有程控轉換開關和數據采集表的情況下,可以采用另一種校準方法,如圖2所示,直接將標準校準源的信號輸出端與被校模塊的信號輸入端連接,被校模塊的信號輸出端與標準數字多用表的信號輸入端連接,從而實現單路全自動校準。
4系統軟件設計
系統軟件設計是實現隔離信號調理模塊自動校準的重要環節之一。本系統軟件設計開發平臺采用功能強大、編程效率高、簡單易學的圖形化編程語言VEEPro。
4.1軟件結構設計
系統軟件設計采用模塊化的設計方式。軟件總體結構設計是由儀器信息記錄、校準及打印輸出三個主模塊構成。儀器信息記錄主模塊是由測試儀器信息登記模塊、計量標準信息記錄模塊、校準結果信息記錄模塊、環境及人員信息記錄模塊四個子模塊組成;打印輸出主模塊是由審核測試數據模塊、打印預覽數據模塊、打印測試數據模塊三個子模塊組成;校準主模塊是由電壓信號調理模塊、電流信號調理模塊、應變信號調理模塊、頻率信號調理模塊、熱電阻RTD信號調理模塊、熱電偶TC信號調理模塊六個模塊組成,其中電壓信號調理模塊[1,2]是由直流線性度誤差校準模塊、直流示值誤差校準模塊、直流放大倍數校準模塊、線性頻率響應校準模塊、零點漂移校準模塊五個子模塊組成;電流信號調理模塊[1]是由線性度誤差校準模塊、穩定度校準模塊兩個子模塊組成;應變信號調理模塊[2,3]是由非線性誤差校準模塊、頻率響應誤差校準模塊、增益誤差校準模塊、零點漂移校準模塊四個子模塊組成;頻率信號調理模塊[1]是由線性度誤差校準模塊、穩定度校準模塊兩個子模塊組成;熱電阻RTD信號調理模塊[1]是由線性度誤差校準模塊、示值誤差校準模塊、穩定度校準模塊三個子模塊組成;熱電偶TC信號調理模塊[1]也是由線性度誤差校準模塊、示值誤差校準模塊、穩定度校準模塊三個子模塊組成。注意上面有些子模塊名稱相同,但模塊設計有所不相,程控標準源輸出的參量是不相同的。系統軟件結構組成示意圖如圖3所示。
4.2軟件流程設計
軟件設計是按照軟件工作流程圖的設計思路進行開發的。由于篇幅有限,只能繪出部分典型模塊的設計流程圖。現以常用的電壓信號調理模塊的線性頻率響應校準項目為例,介紹隔離信號調理模塊的部分軟件設計流程圖。如圖4所示為隔離信號調理模塊的線性頻率響應校準模塊軟件設計流程示意圖。
4.3儀器信息記錄及打印輸出模塊的設計
儀器信息記錄模塊主要實現對測試儀器信息登記、計量標準信息記錄、校準結果信息記錄、環境及測試人員信息記錄。打印輸出模塊主要負責完成審核測試數據、打印預覽數據和打印測試數據。這部分的設計是采用調用開發平臺的庫函數[4]來實現。
4.4校準模塊設計
校準模塊設計是通過編寫儀器驅動來控制標準源發送標準信號及控制標準表采集測試數據,實現對各模塊的自動校準。
4.4.1儀器驅動的編寫
由于被校模塊具有多種型號,根據不同型號,其輸入信號參量不同,采用的標準儀器有所不同,例如:在校準電壓信號調理模塊時,采用多功能校準源;而校準應變信號調理模塊時,采用應變校準器。因此,在編寫程序時,應參照各廠家提供的用戶手冊[5~9],分別編寫儀器驅動程序,實現其標準儀器與計算機的通信。在編寫儀器控制指令代碼時,一定要注意區分字母的大小寫及準確把握時序控制,確保測試數據的同步與準確。
4.4.2多路自動校準模塊的設計
多路自動校準模塊設計是按照將總模塊分解成主模塊,主模塊分解成分模塊,分模塊分解成子模塊的順序逐級分解,分別編寫各個子模塊程序,再將編好的各個子模塊寅分模塊寅主模塊寅總模塊有順地連接起來,即可形成自動校準系統。按照此設計思路將校準主模塊按輸入信號參量不同,分解成電壓、電流、頻率、應變、溫度信號調理模塊,再根據被校模塊型號和校準項目不同,以及采用的標準儀器和校準方式不同分別編寫各子模塊,然后將其正確連接即可。如圖5和圖6所示為電壓信號調理模塊部分設計程序框圖和軟件設計彈出式菜單示意圖。針對隔離信號調理模塊校準不同型號時,其輸入參量及標稱值是不同的,在程序設計時應全面考慮,校準時,應盡量避免手動錄入或更改參數,采用按照被校模塊型號分別編寫預置標稱值模塊,然后以變量方式,一旦確定被校模塊的型號,則系統自動圖5軟件設計部分程序框圖圖6軟件設計部分彈出式菜單示意圖調用所選型號的預置標稱值模塊。這樣,一是可以提高工作效率,二是可以避免人為錄入錯誤或操作人員不同選擇校準點有所不同等因素造成的影響。另外,在誤差處理模塊后還應考慮設有超差判斷功能模塊,以確保測試數據準確可靠。此外,數據存檔格式也是編程需要注意的細節,為了保證測試數據按計量標準格式存檔,采用在預置標稱值模塊中設置保留數據有效位數及獲得變量參數的方式實現,從而達到測試數據—處理數據—保存數據—打印報告自動完成的目的。如圖7所示為5B40-02電壓信號調理模塊的線性頻率響應校準模塊結果顯示及數據存檔格式示意圖。圖中顯示的數據是根據測量放大器校準規范[2]計算得出的。其它校準子模塊的編寫方法與上述類似。
4.5單路自動校準模塊的設計
在完成了多路自動校準模塊的設計后,就很容易編寫單路自動校準模塊的設計,只要將編寫好的多路自動校準模塊復制,并在此基礎上稍作改動,刪除程控轉換開關儀器驅動模塊,將標準數據采集表儀器驅動換成數字多用表儀器驅動,增加彈出式操作提示框等即可完成單路自動校準模塊的設計。如圖8所示為5B40-02電壓信號調理模塊的直流線性度誤差校準模塊結果顯示及數據存檔格式示意圖。圖中顯示的數據是根據數據采集系統校準規范[1]計算得出的。
1.1接地原則的掌握來實現超強的抗干擾能力
在不同的兩點之間底線的連接中,其中的干擾性電壓一般能夠達到幾十伏,但是卻不能夠完全忽視其中的電磁波干擾。由于地線至中所存在的干擾性電波致使發射機在工作過程中存在很強的阻抗能力,進而使得監控系統受到十分強烈的干擾,如果監控系統受到十分劇烈的干擾就使得廣播電視信號發射監控系統的正常工作得不到保障。因此,為了能夠保障其正常的信號發射監控,避免出現高頻干擾,這就需要掌握接地原則。所謂的接地原則就是指在低頻電路之中,各個元件和布線上其電磁感應的影響比較弱,這就需要將其中的一條線路與地纜相連接,進而實現其干擾程度的大大降低。
1.2通過平衡方式信號的傳送來實現抗干擾能力的提高
為了能夠實現信號傳輸過程中的信號干擾,在前端機的信號輸入上和傳感器信息的輸出上就需要利用雙絞線的平衡式信息傳輸,進而實現初始信號的平衡,進而減少不平衡的信號傳送,影響正常的信號接收,而雙絞線的信號傳送方式能夠實現對于干擾信號的一種抵消。在發射機房的接地高頻系統的設定與屏蔽系統之間的雙絞線連接主要采用一對二芯的評比方式,進而避免出現高頻電磁波輻射的屏蔽和感性之間的竄擾,因此這樣的設計方式能夠使得故障出現時通過問題的查找和排除能夠實現高效性和便捷性,進而使得信息傳輸系統更加高效。
2實驗教育改革
2.1基于軟硬件結合的“雙平臺實驗教學”實驗教學作為理論教學的主要補充,在整個教學環節中具有重要地位。我們“信號與系統”課程采用基于軟硬件結合的雙平臺教學,開設24個學時實驗,其中保留了原來的8學時硬件電路實驗,增加了16學時MATLAB軟件實驗,對于實驗內容的取舍和編排二者盡可能取長補短。硬件電路實驗中對于儀器的操作、硬件電路的調試等充分鍛煉了學生的動手能力;對于MATLAB軟件實驗,我們編寫了與理論教材配套的實驗教材,與理論教學同步,實驗教材全面系統的介紹應用MATLAB對信號與系統進行分析與實現的具體方法,并提供程序實例、基本實驗內容和擴展實驗內容。在實驗過程中,學生根據程序實例獨立完成信號與系統分析的可視化建模及仿真調試等實驗內容,培養學生主動獲取知識和獨立解決問題的能力。通過軟硬件結合的實驗,讓學生的動手能力與理論水平同時提高,也更有利于激發學生的學習興趣。
2.2開放性實驗教學
我們的硬件電路實驗全部采用開放性實驗的教學方式。以學生預習﹑自選時間和自主做實驗為主,教師講解示范為輔。為此,我們進一步完善了實驗指導書,并且將示波器等重點儀器的使用方法印成卡片,每個實驗位置放一份。學生做好預習才能準許進實驗室,老師不講解只輔導答疑和檢查結果,學生基本都能完成實驗內容。如果有學生完成規定的實驗內容,則可以充分利用開放實驗進行學習,這期間學生可以在老師的指導下,對相關課外內容進行學習,例如電子制作或進行其它科研項目等。通過推出一系列的實驗自主學習模式后,近年來,我們指導的學生在全國大學生電子制作競賽中獲得了較好的成績,學生動手能力和創新能力有較大提高。
3信號與系統課程網站建設
隨著網絡技術的飛速發展,為構建主動學習環境提供了充分條件,課程網站建設將傳統的以教師為中心的被動學習模式轉變為以學生為中心的主動學習模式,可以激發學生主動探索、主動發現和解決問題,有利于培養創新型人才。我們信號與系統課程網站的建設參考國家精品課程網站的建設思路,采用模塊化的設計思想。網站共分為課程介紹、課程特色、師資隊伍、課程資源、實踐教學、仿真園地、互動交流(BBS)七大板塊。課程資源板塊為學生提供了豐富的學習資源,包括課程的教學大綱、授課計劃表、電子教案、補充習題、學習指導、教學錄像等部分,學生用自己的學號、姓名注冊通過管理員審核后,可以下載課程資源,給學生的課前預習和課后復習帶來了極大的方便。實踐教學板塊包括實驗大綱、實驗項目、實驗指導書等部分,通過實踐教學板塊,學生可充分的利用教學資源掌握試驗內容,同時也為信號與系統課程的教學改革中開放性實驗教學提供了有力的保證。仿真園地板塊結合教學內容,利用MATLAB對關鍵知識點進行建模仿真,并給出了MATLAB仿真的源代碼,這樣可以將信號與系統課程中較難掌握和理解的內容形象生動地展現出來,提高了教學效率,增強了直觀教學和教學效果,從而使學生對所學知識的理解更加透徹。學生在學習中遇到的問題可以通過討論版(BBS)提出,尋求老師或者同學們的幫助,實現師生互動交流。
筆者還要強調一下,在工程前期調研及初設階段首先考慮選擇擁有綠色基站技術的供應商和運營商,例如華為和Vodafone。他們擁有IP組網、分布式基站、先進功放、智能電源管理、多載頻技術、統一架構等關鍵綠色技術。這樣設計的基站穩定性、可靠性高,功耗能夠得到進一步優化,而且更有利于網絡的平穩升級。
二、充分利用軟件技術降低能耗
除提高設計水平和利用硬件升級等手段降低能耗以外,充分利用軟件技術實現節能降耗也越來越重要。隨著軟件技術的飛速發展,其應用領域也越來越廣泛,大到網絡轉型,小到CPU超頻。以筆者所在單位為例,通信網絡轉型的速度遠遠高于其他單位基礎設施的更新換代,如果頻繁地對網絡轉型,將造成大量在線設備的退網淘汰以及更多的資源消耗,那么利用軟件技術提高現有網絡設備的工作效率,從而降低能耗也是非常重要的手段。通過對上網用戶在線時間的統計分析,全網在忙時和閑時網絡負荷變換最大,那么就可以通過軟件調整核心網絡設備的主頻,讓它隨網絡負荷變化,在閑時自動將設備處理能力降低,減少電能的消耗。
三、提高空間利用率降低設備冗余度
隨著通信產業的蓬勃發展,每年入網用戶日益增多,基站和設備間能夠利用的空間越來越小,設備密度也越來越大,電力消耗明顯提高,因此采用高集成度或分布式設計方案來減少基站和設備間的空間占用,使用體積更小,重量更輕,支持端口更多的設備來有效降低設備冗余度,對于降低能耗也是重要的綠色手段。對于高端網絡設備來講,性能和功能無疑是最重要的,功耗降低會以性能的降低為代價。一般的情況下,為保證功能、性能、業務卡的數量和運行可靠,設備的功耗也會較大。這類設備數量較少,放置位置的環境情況也比較好。因此,在選擇高端設備方面我們只是把功耗指標作為一個輔助的參考指標。
對于低端的網絡產品,如數量巨大的接入層交換機,雖然他們的功能都很強大,但是我們實際應用時只會用到它的部分功能,完全可以通過犧牲一些我們不需要的性能來換取設備的功耗降低。現在有一些接入層交換機因為自身功耗小,已經實現了設備內部無風扇,這類產品就能很好地降低設備的功耗。對于低端網絡設備來說,采購過程中會把功耗作為一個比較重要的指標來考慮
四、推崇綠色環保能源的使用
利用太陽能和風能等混合能源,可更好地保護環境,減少污染物排放。在有條件的地區充分利用太陽能、風能作為輔助能源,降低電能消耗,分解能源問題。在北方城市,利用季節明顯,冬季日夜溫差較大的特點,優化基站、核心機房、設備間的通風設計方案和溫度控制方案,充分利用自然環境溫度實現溫控的目的,減少冷卻系統和大功率空調的使用,降低能耗,建立更多能源使用的綠色通道,使能源利用率更高。
為了使通信產業向著更加綠色的方向發展,節能降耗勢在必行,讓我們共同努力,打造出更多的綠色通道,從技術上提高設備、能源的使用效率,減少不必要的損耗,以實際行動來保護環境,推動通信產業持續健康發展。
參考文獻:
[1]梁文斌.通信機房節能降耗前景廣闊[N].人民郵電,2008,03-06
近幾年來,全球移動通信產業蓬勃發展。2007年,全球移動用戶數增長了25.9%,2008年由于UMTS3G網絡的開通,用戶數增長了14%,2009年3G網絡的開通,用戶將向WiMAX網絡和4G網絡轉移??傊?,全球移動市場仍處于快速增長期。通信產業是一個高科技行業,也是一個高耗能行業,隨著網絡規模的不斷擴張,通信網絡的核心設備、動力系統、冷卻系統以及機房、基站等成倍增加,能耗巨大,目前我國的通信網絡有上萬臺的核心交換設備,有幾十萬的基站,大量的設備不僅需要人員的支撐,而且不間斷的網絡環境也更需要能源來保障。據有關部門估計,2007年我國IT產品的總耗電預計為300億—500億千瓦時。這幾乎相當于三峽電站一年的發電總量(2006年為492.50億千瓦時)。這些林林總總的IT產品,已經讓我們的生活發生了翻天覆地的變化,改變著人們的生產和生活狀態,但是這些IT產品功耗大而且數量眾多,累積起來所消耗的電能可以說是觸目驚心。2008年世界金融風暴使得全球能源供給日趨緊張,2009年能源緊張的格局將會更加嚴峻,因此節能降耗的綠色通道對于通信行業來說顯得尤為重要。
由于IT設備需要成年累月不間斷地運行,除了IT設備自身耗電量巨大外,為滿足機房環境溫度、濕度、空氣含塵濃度的要求,機房內要獨立設置空調調節系統,加上用于機房環境條件技術保障的其他設備,這些最終導致機房成為電力消耗的“大戶”。從機房用電分配上來看,其中IT設備占電能總能耗的44%,制冷系統占38%,電源系統占到15%,照明系統占3%。在機房的IT設備中,網絡設備大概占30%,即大約占機房總能耗的13%。同時,如果網絡設備的功耗降低,相應的空調等設備的消耗也會相應降低,因此目前網絡中心耗能最大的是服務器,其次是一些主干網采用的大型網絡設備,當然其他低端網絡設備因為數量眾多也是不容忽視的。主設備是指服務器、BTS(基站收發臺),其功耗由接入設備的數量和網絡的負荷決定;配套設備主要指空調,基站設備對環境溫度、濕度和潔凈度有一定要求,以保證通信設備的正常運行,空調占了總功耗的絕大部分,平均下來約為總功耗的50%,以中國電信為例,2007年全年消耗電能超過200億度,各種能耗費用超過100億元人民幣;其它功耗成分來自配電系統等。
各國政府已經開始行動以減少能源的消耗、二氧化碳及其他污染物的排放,我國“十一五”規劃就明確了節能減排的工作指標:到2010年,單位國內生產總值能耗降低20%左右。能源的消耗可以用二氧化碳的排放量來計算,1千瓦時約等于0.658kg二氧化碳排放量,除主設備外其他設備的能源消耗也可以用二氧化碳的排放量來計算。假設一個正常基站可使用10年,總二氧化碳排放量為422噸。在所有的影響因素中,主設備占了總二氧化碳排放量的30.9%。根據對二氧化碳排放量的分析,通信產業節能降耗的綠色通道可以從以下5方面展開:1、打造綠色基站,采用新型的功放芯片和高效功放技術,提高設備的能效;2、應用綠色基站軟件有效降低靜態功耗,大幅降低業務量少時的能耗。3、綠色高效的冷卻方案,即減少冷卻能耗和提高電信設備耐熱能力,這樣設備可工作在室溫或更大濕度環境中。4、使用高集成度或分布式方案來減少基站占用空間,即采用多密度載波和射頻寬帶技術實現單模塊支持4到6個載波,同等容量下基站體積更小,重量更輕,UPS等配套要求更低。5、綠色能源的使用,即充分利用太陽能和風能等綠色環保能源。
一、建立綠色核心網絡
從這么多年從事通信網絡設計工作的經驗中,筆者了解到傳統的核心網絡架構是相當復雜的,不僅一二級核心網絡層次多,而且大量的網元導致網絡復雜,整網能耗偏高。以筆者設計的機房為例:機房空間有限,服務器的能耗非常高,導致散熱程度差,而且需要加裝空調,再加上每年擴容的需要,交換機走線和設備布局的不合理,使機房無法實施更進一步的節能降耗措施。因此建立綠色核心網絡勢在必行。建立綠色核心網絡首先應該優化核心網絡架構,實行網絡的扁平化管理,減少核心網中網元的數量,使核心設備上移,逐步使用集成度高,電信級別的平臺代替傳統的服務器,同時建立專業的機房散熱管理方案,如采用自下而上的回風流方式提高冷風的利用率,尤其是在北方城市,這樣就可以有效減少機房空調的使用。
筆者還要強調一下,在工程前期調研及初設階段首先考慮選擇擁有綠色基站技術的供應商和運營商,例如華為和Vodafone。他們擁有IP組網、分布式基站、先進功放、智能電源管理、多載頻技術、統一架構等關鍵綠色技術。這樣設計的基站穩定性、可靠性高,功耗能夠得到進一步優化,而且更有利于網絡的平穩升級。
二、充分利用軟件技術降低能耗
除提高設計水平和利用硬件升級等手段降低能耗以外,充分利用軟件技術實現節能降耗也越來越重要。隨著軟件技術的飛速發展,其應用領域也越來越廣泛,大到網絡轉型,小到CPU超頻。以筆者所在單位為例,通信網絡轉型的速度遠遠高于其他單位基礎設施的更新換代,如果頻繁地對網絡轉型,將造成大量在線設備的退網淘汰以及更多的資源消耗,那么利用軟件技術提高現有網絡設備的工作效率,從而降低能耗也是非常重要的手段。通過對上網用戶在線時間的統計分析,全網在忙時和閑時網絡負荷變換最大,那么就可以通過軟件調整核心網絡設備的主頻,讓它隨網絡負荷變化,在閑時自動將設備處理能力降低,減少電能的消耗。
三、提高空間利用率降低設備冗余度
隨著通信產業的蓬勃發展,每年入網用戶日益增多,基站和設備間能夠利用的空間越來越小,設備密度也越來越大,電力消耗明顯提高,因此采用高集成度或分布式設計方案來減少基站和設備間的空間占用,使用體積更小,重量更輕,支持端口更多的設備來有效降低設備冗余度,對于降低能耗也是重要的綠色手段。對于高端網絡設備來講,性能和功能無疑是最重要的,功耗降低會以性能的降低為代價。一般的情況下,為保證功能、性能、業務卡的數量和運行可靠,設備的功耗也會較大。這類設備數量較少,放置位置的環境情況也比較好。因此,在選擇高端設備方面我們只是把功耗指標作為一個輔助的參考指標。
對于低端的網絡產品,如數量巨大的接入層交換機,雖然他們的功能都很強大,但是我們實際應用時只會用到它的部分功能,完全可以通過犧牲一些我們不需要的性能來換取設備的功耗降低?,F在有一些接入層交換機因為自身功耗小,已經實現了設備內部無風扇,這類產品就能很好地降低設備的功耗。對于低端網絡設備來說,采購過程中會把功耗作為一個比較重要的指標來考慮
四、推崇綠色環保能源的使用
利用太陽能和風能等混合能源,可更好地保護環境,減少污染物排放。在有條件的地區充分利用太陽能、風能作為輔助能源,降低電能消耗,分解能源問題。在北方城市,利用季節明顯,冬季日夜溫差較大的特點,優化基站、核心機房、設備間的通風設計方案和溫度控制方案,充分利用自然環境溫度實現溫控的目的,減少冷卻系統和大功率空調的使用,降低能耗,建立更多能源使用的綠色通道,使能源利用率更高。
為了使通信產業向著更加綠色的方向發展,節能降耗勢在必行,讓我們共同努力,打造出更多的綠色通道,從技術上提高設備、能源的使用效率,減少不必要的損耗,以實際行動來保護環境,推動通信產業持續健康發展。