時間:2022-11-16 01:50:36
序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇材料導論論文范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!
1半導體材料的戰略地位
上世紀中葉,單晶硅和半導體晶體管的發明及其硅集成電路的研制成功,導致了電子工業革命;上世紀70年代初石英光導纖維材料和GaAs激光器的發明,促進了光纖通信技術迅速發展并逐步形成了高新技術產業,使人類進入了信息時代。超晶格概念的提出及其半導體超晶格、量子阱材料的研制成功,徹底改變了光電器件的設計思想,使半導體器件的設計與制造從“雜質工程”發展到“能帶工程”。納米科學技術的發展和應用,將使人類能從原子、分子或納米尺度水平上控制、操縱和制造功能強大的新型器件與電路,必將深刻地影響著世界的政治、經濟格局和軍事對抗的形式,徹底改變人們的生活方式。
2幾種主要半導體材料的發展現狀與趨勢
2.1硅材料
從提高硅集成電路成品率,降低成本看,增大直拉硅(CZ-Si)單晶的直徑和減小微缺陷的密度仍是今后CZ-Si發展的總趨勢。目前直徑為8英寸(200mm)的Si單晶已實現大規模工業生產,基于直徑為12英寸(300mm)硅片的集成電路(IC‘s)技術正處在由實驗室向工業生產轉變中。目前300mm,0.18μm工藝的硅ULSI生產線已經投入生產,300mm,0.13μm工藝生產線也將在2003年完成評估。18英寸重達414公斤的硅單晶和18英寸的硅園片已在實驗室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。
從進一步提高硅IC‘S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會成為硅材料發展的主流。另外,SOI材料,包括智能剝離(Smartcut)和SIMOX材料等也發展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發中。
理論分析指出30nm左右將是硅MOS集成電路線寬的“極限”尺寸。這不僅是指量子尺寸效應對現有器件特性影響所帶來的物理限制和光刻技術的限制問題,更重要的是將受硅、SiO2自身性質的限制。盡管人們正在積極尋找高K介電絕緣材料(如用Si3N4等來替代SiO2),低K介電互連材料,用Cu代替Al引線以及采用系統集成芯片技術等來提高ULSI的集成度、運算速度和功能,但硅將最終難以滿足人類不斷的對更大信息量需求。為此,人們除尋求基于全新原理的量子計算和DNA生物計算等之外,還把目光放在以GaAs、InP為基的化合物半導體材料,特別是二維超晶格、量子阱,一維量子線與零維量子點材料和可與硅平面工藝兼容GeSi合金材料等,這也是目前半導體材料研發的重點。
2.2GaAs和InP單晶材料
GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點;在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨特的優勢。
目前,世界GaAs單晶的總年產量已超過200噸,其中以低位錯密度的垂直梯度凝固法(VGF)和水平(HB)方法生長的2-3英寸的導電GaAs襯底材料為主;近年來,為滿足高速移動通信的迫切需求,大直徑(4,6和8英寸)的SI-GaAs發展很快。美國莫托羅拉公司正在籌建6英寸的SI-GaAs集成電路生產線。InP具有比GaAs更優越的高頻性能,發展的速度更快,但研制直徑3英寸以上大直徑的InP單晶的關鍵技術尚未完全突破,價格居高不下。
GaAs和InP單晶的發展趨勢是:
(1)。增大晶體直徑,目前4英寸的SI-GaAs已用于生產,預計本世紀初的頭幾年直徑為6英寸的SI-GaAs也將投入工業應用。
(2)。提高材料的電學和光學微區均勻性。
(3)。降低單晶的缺陷密度,特別是位錯。
(4)。GaAs和InP單晶的VGF生長技術發展很快,很有可能成為主流技術。
2.3半導體超晶格、量子阱材料
半導體超薄層微結構材料是基于先進生長技術(MBE,MOCVD)的新一代人工構造材料。它以全新的概念改變著光電子和微電子器件的設計思想,出現了“電學和光學特性可剪裁”為特征的新范疇,是新一代固態量子器件的基礎材料。
(1)Ⅲ-V族超晶格、量子阱材料。
GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和應變補償材料體系已發展得相當成熟,已成功地用來制造超高速,超高頻微電子器件和單片集成電路。高電子遷移率晶體管(HEMT),贗配高電子遷移率晶體管(P-HEMT)器件最好水平已達fmax=600GHz,輸出功率58mW,功率增益6.4db;雙異質結雙極晶體管(HBT)的最高頻率fmax也已高達500GHz,HEMT邏輯電路研制也發展很快?;谏鲜霾牧象w系的光通信用1.3μm和1.5μm的量子阱激光器和探測器,紅、黃、橙光發光二極管和紅光激光器以及大功率半導體量子阱激光器已商品化;表面光發射器件和光雙穩器件等也已達到或接近達到實用化水平。目前,研制高質量的1.5μm分布反饋(DFB)激光器和電吸收(EA)調制器單片集成InP基多量子阱材料和超高速驅動電路所需的低維結構材料是解決光纖通信瓶頸問題的關鍵,在實驗室西門子公司已完成了80×40Gbps傳輸40km的實驗。另外,用于制造準連續兆瓦級大功率激光陣列的高質量量子阱材料也受到人們的重視。
雖然常規量子阱結構端面發射激光器是目前光電子領域占統治地位的有源器件,但由于其有源區極?。ā?.01μm)端面光電災變損傷,大電流電熱燒毀和光束質量差一直是此類激光器的性能改善和功率提高的難題。采用多有源區量子級聯耦合是解決此難題的有效途徑之一。我國早在1999年,就研制成功980nmInGaAs帶間量子級聯激光器,輸出功率達5W以上;2000年初,法國湯姆遜公司又報道了單個激光器準連續輸出功率超過10瓦好結果。最近,我國的科研工作者又提出并開展了多有源區縱向光耦合垂直腔面發射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質量的新型激光器,在未來光通信、光互聯與光電信息處理方面有著良好的應用前景。
為克服PN結半導體激光器的能隙對激光器波長范圍的限制,1994年美國貝爾實驗室發明了基于量子阱內子帶躍遷和阱間共振隧穿的量子級聯激光器,突破了半導體能隙對波長的限制。自從1994年InGaAs/InAIAs/InP量子級聯激光器(QCLs)發明以來,Bell實驗室等的科學家,在過去的7年多的時間里,QCLs在向大功率、高溫和單膜工作等研究方面取得了顯著的進展。2001年瑞士Neuchatel大學的科學家采用雙聲子共振和三量子阱有源區結構使波長為9.1μm的QCLs的工作溫度高達312K,連續輸出功率3mW.量子級聯激光器的工作波長已覆蓋近紅外到遠紅外波段(3-87μm),并在光通信、超高分辨光譜、超高靈敏氣體傳感器、高速調制器和無線光學連接等方面顯示出重要的應用前景。中科院上海微系統和信息技術研究所于1999年研制成功120K5μm和250K8μm的量子級聯激光器;中科院半導體研究所于2000年又研制成功3.7μm室溫準連續應變補償量子級聯激光器,使我國成為能研制這類高質量激光器材料為數不多的幾個國家之一。
目前,Ⅲ-V族超晶格、量子阱材料作為超薄層微結構材料發展的主流方向,正從直徑3英寸向4英寸過渡;生產型的MBE和M0CVD設備已研制成功并投入使用,每臺年生產能力可高達3.75×104片4英寸或1.5×104片6英寸。英國卡迪夫的MOCVD中心,法國的PicogigaMBE基地,美國的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有這種外延材料出售。生產型MBE和MOCVD設備的成熟與應用,必然促進襯底材料設備和材料評價技術的發展。
(2)硅基應變異質結構材料。
硅基光、電器件集成一直是人們所追求的目標。但由于硅是間接帶隙,如何提高硅基材料發光效率就成為一個亟待解決的問題。雖經多年研究,但進展緩慢。人們目前正致力于探索硅基納米材料(納米Si/SiO2),硅基SiGeC體系的Si1-yCy/Si1-xGex低維結構,Ge/Si量子點和量子點超晶格材料,Si/SiC量子點材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發光器件和有關納米硅的受激放大現象的報道,使人們看到了一線希望。
另一方面,GeSi/Si應變層超晶格材料,因其在新一代移動通信上的重要應用前景,而成為目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止頻率已達200GHz,HBT最高振蕩頻率為160GHz,噪音在10GHz下為0.9db,其性能可與GaAs器件相媲美。
盡管GaAs/Si和InP/Si是實現光電子集成理想的材料體系,但由于晶格失配和熱膨脹系數等不同造成的高密度失配位錯而導致器件性能退化和失效,防礙著它的使用化。最近,Motolora等公司宣稱,他們在12英寸的硅襯底上,用鈦酸鍶作協變層(柔性層),成功的生長了器件級的GaAs外延薄膜,取得了突破性的進展。
2.4一維量子線、零維量子點半導體微結構材料
基于量子尺寸效應、量子干涉效應,量子隧穿效應和庫侖阻效應以及非線性光學效應等的低維半導體材料是一種人工構造(通過能帶工程實施)的新型半導體材料,是新一代微電子、光電子器件和電路的基礎。它的發展與應用,極有可能觸發新的技術革命。
目前低維半導體材料生長與制備主要集中在幾個比較成熟的材料體系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在納米微電子和光電子研制方面取得了重大進展。俄羅斯約飛技術物理所MBE小組,柏林的俄德聯合研制小組和中科院半導體所半導體材料科學重點實驗室的MBE小組等研制成功的In(Ga)As/GaAs高功率量子點激光器,工作波長lμm左右,單管室溫連續輸出功率高達3.6~4W.特別應當指出的是我國上述的MBE小組,2001年通過在高功率量子點激光器的有源區材料結構中引入應力緩解層,抑制了缺陷和位錯的產生,提高了量子點激光器的工作壽命,室溫下連續輸出功率為1W時工作壽命超過5000小時,這是大功率激光器的一個關鍵參數,至今未見國外報道。
在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進展,1994年日本NTT就研制成功溝道長度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國又報道了可在室溫工作的單電子開關器件,1998年Yauo等人采用0.25微米工藝技術實現了128Mb的單電子存貯器原型樣機的制造,這是在單電子器件在高密度存貯電路的應用方面邁出的關鍵一步。目前,基于量子點的自適應網絡計算機,單光子源和應用于量子計算的量子比特的構建等方面的研究也正在進行中。
與半導體超晶格和量子點結構的生長制備相比,高度有序的半導體量子線的制備技術難度較大。中科院半導體所半導體材料科學重點實驗室的MBE小組,在繼利用MBE技術和SK生長模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結構的基礎上,對InAs/InAlAs量子線超晶格的空間自對準(垂直或斜對準)的物理起因和生長控制進行了研究,取得了較大進展。
王中林教授領導的喬治亞理工大學的材料科學與工程系和化學與生物化學系的研究小組,基于無催化劑、控制生長條件的氧化物粉末的熱蒸發技術,成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導體氧化物納米帶,它們與具有圓柱對稱截面的中空納米管或納米線不同,這些原生的納米帶呈現出高純、結構均勻和單晶體,幾乎無缺陷和位錯;納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長度可達數毫米。這種半導體氧化物納米帶是一個理想的材料體系,可以用來研究載流子維度受限的輸運現象和基于它的功能器件制造。香港城市大學李述湯教授和瑞典隆德大學固體物理系納米中心的LarsSamuelson教授領導的小組,分別在SiO2/Si和InAs/InP半導體量子線超晶格結構的生長制各方面也取得了重要進展。
低維半導體結構制備的方法很多,主要有:微結構材料生長和精細加工工藝相結合的方法,應變自組裝量子線、量子點材料生長技術,圖形化襯底和不同取向晶面選擇生長技術,單原子操縱和加工技術,納米結構的輻照制備技術,及其在沸石的籠子中、納米碳管和溶液中等通過物理或化學方法制備量子點和量子線的技術等。目前發展的主要趨勢是尋找原子級無損傷加工方法和納米結構的應變自組裝可控生長技術,以求獲得大小、形狀均勻、密度可控的無缺陷納米結構。
2.5寬帶隙半導體材料
寬帶隙半導體材主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導率、高電子飽和漂移速度和大臨界擊穿電壓等特點,成為研制高頻大功率、耐高溫、抗輻照半導體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國防等方面有著廣泛的應用前景。另外,III族氮化物也是很好的光電子材料,在藍、綠光發光二極管(LED)和紫、藍、綠光激光器(LD)以及紫外探測器等應用方面也顯示了廣泛的應用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍綠光發光材料的研究熱點。目前,GaN基藍綠光發光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W.在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達140GHz,fT=67GHz,跨導為260ms/mm;HEMT器件也相繼問世,發展很快。此外,256×256GaN基紫外光電焦平面陣列探測器也已研制成功。特別值得提出的是,日本Sumitomo電子工業有限公司2000年宣稱,他們采用熱力學方法已研制成功2英寸GaN單晶材料,這將有力的推動藍光激光器和GaN基電子器件的發展。另外,近年來具有反常帶隙彎曲的窄禁帶InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重視,這是因為它們在長波長光通信用高T0光源和太陽能電池等方面顯示了重要應用前景。
以Cree公司為代表的體SiC單晶的研制已取得突破性進展,2英寸的4H和6HSiC單晶與外延片,以及3英寸的4HSiC單晶己有商品出售;以SiC為GaN基材料襯低的藍綠光LED業已上市,并參于與以藍寶石為襯低的GaN基發光器件的竟爭。其他SiC相關高溫器件的研制也取得了長足的進步。目前存在的主要問題是材料中的缺陷密度高,且價格昂貴。
II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國3M公司成功地解決了II-VI族的P型摻雜難點而得到迅速發展。1991年3M公司利用MBE技術率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導體激光(材料)器件研制的。經過多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過1000小時,但離使用差距尚大,加之GaN基材料的迅速發展和應用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區材料的完整性,特別是要降低由非化學配比導致的點缺陷密度和進一步降低失配位錯和解決歐姆接觸等問題,仍是該材料體系走向實用化前必須要解決的問題。
寬帶隙半導體異質結構材料往往也是典型的大失配異質結構材料,所謂大失配
異質結構材料是指晶格常數、熱膨脹系數或晶體的對稱性等物理參數有較大差異的材料體系,如GaN/藍寶石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引發界面處大量位錯和缺陷的產生,極大地影響著微結構材料的光電性能及其器件應用。如何避免和消除這一負面影響,是目前材料制備中的一個迫切要解決的關鍵科學問題。這個問題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應用領域。
目前,除SiC單晶襯低材料,GaN基藍光LED材料和器件已有商品出售外,大多數高溫半導體材料仍處在實驗室研制階段,不少影響這類材料發展的關鍵問題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長與N型摻雜,II-VI族材料的退化機理等仍是制約這些材料實用化的關鍵問題,國內外雖已做了大量的研究,至今尚未取得重大突破。
3光子晶體
光子晶體是一種人工微結構材料,介電常數周期的被調制在與工作波長相比擬的尺度,來自結構單元的散射波的多重干涉形成一個光子帶隙,與半導體材料的電子能隙相似,并可用類似于固態晶體中的能帶論來描述三維周期介電結構中光波的傳播,相應光子晶體光帶隙(禁帶)能量的光波模式在其中的傳播是被禁止的。如果光子晶體的周期性被破壞,那么在禁帶中也會引入所謂的“施主”和“受主”模,光子態密度隨光子晶體維度降低而量子化。如三維受限的“受主”摻雜的光子晶體有希望制成非常高Q值的單模微腔,從而為研制高質量微腔激光器開辟新的途徑。光子晶體的制備方法主要有:聚焦離子束(FIB)結合脈沖激光蒸發方法,即先用脈沖激光蒸發制備如Ag/MnO多層膜,再用FIB注入隔離形成一維或二維平面陣列光子晶體;基于功能粒子(磁性納米顆粒Fe2O3,發光納米顆粒CdS和介電納米顆粒TiO2)和共軛高分子的自組裝方法,可形成適用于可光范圍的三維納米顆粒光子晶體;二維多空硅也可制作成一個理想的3-5μm和1.5μm光子帶隙材料等。目前,二維光子晶體制造已取得很大進展,但三維光子晶體的研究,仍是一個具有挑戰性的課題。最近,Campbell等人提出了全息光柵光刻的方法來制造三維光子晶體,取得了進展。
4量子比特構建與材料
隨著微電子技術的發展,計算機芯片集成度不斷增高,器件尺寸越來越?。╪m尺度)并最終將受到器件工作原理和工藝技術限制,而無法滿足人類對更大信息量的需求。為此,發展基于全新原理和結構的功能強大的計算機是21世紀人類面臨的巨大挑戰之一。1994年Shor基于量子態疊加性提出的量子并行算法并證明可輕而易舉地破譯目前廣泛使用的公開密鑰Rivest,Shamir和Adlman(RSA)體系,引起了人們的廣泛重視。
所謂量子計算機是應用量子力學原理進行計的裝置,理論上講它比傳統計算機有更快的運算速度,更大信息傳遞量和更高信息安全保障,有可能超越目前計算機理想極限。實現量子比特構造和量子計算機的設想方案很多,其中最引人注目的是Kane最近提出的一個實現大規模量子計算的方案。其核心是利用硅納米電子器件中磷施主核自旋進行信息編碼,通過外加電場控制核自旋間相互作用實現其邏輯運算,自旋測量是由自旋極化電子電流來完成,計算機要工作在mK的低溫下。
這種量子計算機的最終實現依賴于與硅平面工藝兼容的硅納米電子技術的發展。除此之外,為了避免雜質對磷核自旋的干擾,必需使用高純(無雜質)和不存在核自旋不等于零的硅同位素(29Si)的硅單晶;減小SiO2絕緣層的無序漲落以及如何在硅里摻入規則的磷原子陣列等是實現量子計算的關鍵。量子態在傳輸,處理和存儲過程中可能因環境的耦合(干擾),而從量子疊加態演化成經典的混合態,即所謂失去相干,特別是在大規模計算中能否始終保持量子態間的相干是量子計算機走向實用化前所必需克服的難題。
5發展我國半導體材料的幾點建議
鑒于我國目前的工業基礎,國力和半導體材料的發展水平,提出以下發展建議供參考。
5.1硅單晶和外延材料硅材料作為微電子技術的主導地位
至少到本世紀中葉都不會改變,至今國內各大集成電路制造廠家所需的硅片基本上是依賴進口。目前國內雖已可拉制8英寸的硅單晶和小批量生產6英寸的硅外延片,然而都未形成穩定的批量生產能力,更談不上規模生產。建議國家集中人力和財力,首先開展8英寸硅單晶實用化和6英寸硅外延片研究開發,在“十五”的后期,爭取做到8英寸集成電路生產線用硅單晶材料的國產化,并有6~8英寸硅片的批量供片能力。到2010年左右,我國應有8~12英寸硅單晶、片材和8英寸硅外延片的規模生產能力;更大直徑的硅單晶、片材和外延片也應及時布點研制。另外,硅多晶材料生產基地及其相配套的高純石英、氣體和化學試劑等也必需同時給以重視,只有這樣,才能逐步改觀我國微電子技術的落后局面,進入世界發達國家之林。超級秘書網
5.2GaAs及其有關化合物半導體單晶材料發展建議
GaAs、InP等單晶材料同國外的差距主要表現在拉晶和晶片加工設備落后,沒有形成生產能力。相信在國家各部委的統一組織、領導下,并爭取企業介入,建立我國自己的研究、開發和生產聯合體,取各家之長,分工協作,到2010年趕上世界先進水平是可能的。要達到上述目的,到“十五”末應形成以4英寸單晶為主2-3噸/年的SI-GaAs和3-5噸/年摻雜GaAs、InP單晶和開盒就用晶片的生產能力,以滿足我國不斷發展的微電子和光電子工業的需術。到2010年,應當實現4英寸GaAs生產線的國產化,并具有滿足6英寸線的供片能力。
5.3發展超晶格、量子阱和一維、零維半導體微結構材料的建議
(1)超晶格、量子阱材料從目前我國國力和我們已有的基礎出發,應以三基色(超高亮度紅、綠和藍光)材料和光通信材料為主攻方向,并兼顧新一代微電子器件和電路的需求,加強MBE和MOCVD兩個基地的建設,引進必要的適合批量生產的工業型MBE和MOCVD設備并著重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基藍綠光材料,InGaAs/InP和InGaAsP/InP等材料體系的實用化研究是當務之急,爭取在“十五”末,能滿足國內2、3和4英寸GaAs生產線所需要的異質結材料。到2010年,每年能具備至少100萬平方英寸MBE和MOCVD微電子和光電子微結構材料的生產能力。達到本世紀初的國際水平。
寬帶隙高溫半導體材料如SiC,GaN基微電子材料和單晶金剛石薄膜以及ZnO等材料也應擇優布點,分別做好研究與開發工作。
1半導體材料的戰略地位
上世紀中葉,單晶硅和半導體晶體管的發明及其硅集成電路的研制成功,導致了電子工業革命;上世紀70年代初石英光導纖維材料和GaAs激光器的發明,促進了光纖通信技術迅速發展并逐步形成了高新技術產業,使人類進入了信息時代。超晶格概念的提出及其半導體超晶格、量子阱材料的研制成功,徹底改變了光電器件的設計思想,使半導體器件的設計與制造從“雜質工程”發展到“能帶工程”。納米科學技術的發展和應用,將使人類能從原子、分子或納米尺度水平上控制、操縱和制造功能強大的新型器件與電路,必將深刻地影響著世界的政治、經濟格局和軍事對抗的形式,徹底改變人們的生活方式。
2幾種主要半導體材料的發展現狀與趨勢
2.1硅材料
從提高硅集成電路成品率,降低成本看,增大直拉硅(CZ-Si)單晶的直徑和減小微缺陷的密度仍是今后CZ-Si發展的總趨勢。目前直徑為8英寸(200mm)的Si單晶已實現大規模工業生產,基于直徑為12英寸(300mm)硅片的集成電路(IC’s)技術正處在由實驗室向工業生產轉變中。目前300mm,0.18μm工藝的硅ULSI生產線已經投入生產,300mm,0.13μm工藝生產線也將在2003年完成評估。18英寸重達414公斤的硅單晶和18英寸的硅園片已在實驗室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。
從進一步提高硅IC’S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會成為硅材料發展的主流。另外,SOI材料,包括智能剝離(Smartcut)和SIMOX材料等也發展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發中。
理論分析指出30nm左右將是硅MOS集成電路線寬的“極限”尺寸。這不僅是指量子尺寸效應對現有器件特性影響所帶來的物理限制和光刻技術的限制問題,更重要的是將受硅、SiO2自身性質的限制。盡管人們正在積極尋找高K介電絕緣材料(如用Si3N4等來替代SiO2),低K介電互連材料,用Cu代替Al引線以及采用系統集成芯片技術等來提高ULSI的集成度、運算速度和功能,但硅將最終難以滿足人類不斷的對更大信息量需求。為此,人們除尋求基于全新原理的量子計算和DNA生物計算等之外,還把目光放在以GaAs、InP為基的化合物半導體材料,特別是二維超晶格、量子阱,一維量子線與零維量子點材料和可與硅平面工藝兼容GeSi合金材料等,這也是目前半導體材料研發的重點。
2.2GaAs和InP單晶材料
GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點;在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨特的優勢。
目前,世界GaAs單晶的總年產量已超過200噸,其中以低位錯密度的垂直梯度凝固法(VGF)和水平(HB)方法生長的2-3英寸的導電GaAs襯底材料為主;近年來,為滿足高速移動通信的迫切需求,大直徑(4,6和8英寸)的SI-GaAs發展很快。美國莫托羅拉公司正在籌建6英寸的SI-GaAs集成電路生產線。InP具有比GaAs更優越的高頻性能,發展的速度更快,但研制直徑3英寸以上大直徑的InP單晶的關鍵技術尚未完全突破,價格居高不下。
GaAs和InP單晶的發展趨勢是:(1).增大晶體直徑,目前4英寸的SI-GaAs已用于生產,預計本世紀初的頭幾年直徑為6英寸的SI-GaAs也將投入工業應用。(2).提高材料的電學和光學微區均勻性。(3).降低單晶的缺陷密度,特別是位錯。(4).GaAs和InP單晶的VGF生長技術發展很快,很有可能成為主流技術。
2.3半導體超晶格、量子阱材料
半導體超薄層微結構材料是基于先進生長技術(MBE,MOCVD)的新一代人工構造材料。它以全新的概念改變著光電子和微電子器件的設計思想,出現了“電學和光學特性可剪裁”為特征的新范疇,是新一代固態量子器件的基礎材料。
(1)Ⅲ-V族超晶格、量子阱材料。GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和應變補償材料體系已發展得相當成熟,已成功地用來制造超高速,超高頻微電子器件和單片集成電路。高電子遷移率晶體管(HEMT),贗配高電子遷移率晶體管(P-HEMT)器件最好水平已達fmax=600GHz,輸出功率58mW,功率增益6.4db;雙異質結雙極晶體管(HBT)的最高頻率fmax也已高達500GHz,HEMT邏輯電路研制也發展很快?;谏鲜霾牧象w系的光通信用1.3μm和1.5μm的量子阱激光器和探測器,紅、黃、橙光發光二極管和紅光激光器以及大功率半導體量子阱激光器已商品化;表面光發射器件和光雙穩器件等也已達到或接近達到實用化水平。目前,研制高質量的1.5μm分布反饋(DFB)激光器和電吸收(EA)調制器單片集成InP基多量子阱材料和超高速驅動電路所需的低維結構材料是解決光纖通信瓶頸問題的關鍵,在實驗室西門子公司已完成了80×40Gbps傳輸40km的實驗。另外,用于制造準連續兆瓦級大功率激光陣列的高質量量子阱材料也受到人們的重視。
雖然常規量子阱結構端面發射激光器是目前光電子領域占統治地位的有源器件,但由于其有源區極薄(~0.01μm)端面光電災變損傷,大電流電熱燒毀和光束質量差一直是此類激光器的性能改善和功率提高的難題。采用多有源區量子級聯耦合是解決此難題的有效途徑之一。我國早在1999年,就研制成功980nmInGaAs帶間量子級聯激光器,輸出功率達5W以上;2000年初,法國湯姆遜公司又報道了單個激光器準連續輸出功率超過10瓦好結果。最近,我國的科研工作者又提出并開展了多有源區縱向光耦合垂直腔面發射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質量的新型激光器,在未來光通信、光互聯與光電信息處理方面有著良好的應用前景。
為克服PN結半導體激光器的能隙對激光器波長范圍的限制,1994年美國貝爾實驗室發明了基于量子阱內子帶躍遷和阱間共振隧穿的量子級聯激光器,突破了半導體能隙對波長的限制。自從1994年InGaAs/InAIAs/InP量子級聯激光器(QCLs)發明以來,Bell實驗室等的科學家,在過去的7年多的時間里,QCLs在向大功率、高溫和單膜工作等研究方面取得了顯著的進展。2001年瑞士Neuchatel大學的科學家采用雙聲子共振和三量子阱有源區結構使波長為9.1μm的QCLs的工作溫度高達312K,連續輸出功率3mW。量子級聯激光器的工作波長已覆蓋近紅外到遠紅外波段(3-87μm),并在光通信、超高分辨光譜、超高靈敏氣體傳感器、高速調制器和無線光學連接等方面顯示出重要的應用前景。中科院上海微系統和信息技術研究所于1999年研制成功120K5μm和250K8μm的量子級聯激光器;中科院半導體研究所于2000年又研制成功3.7μm室溫準連續應變補償量子級聯激光器,使我國成為能研制這類高質量激光器材料為數不多的幾個國家之一。
目前,Ⅲ-V族超晶格、量子阱材料作為超薄層微結構材料發展的主流方向,正從直徑3英寸向4英寸過渡;生產型的MBE和M0CVD設備已研制成功并投入使用,每臺年生產能力可高達3.75×104片4英寸或1.5×104片6英寸。英國卡迪夫的MOCVD中心,法國的PicogigaMBE基地,美國的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有這種外延材料出售。生產型MBE和MOCVD設備的成熟與應用,必然促進襯底材料設備和材料評價技術的發展。
(2)硅基應變異質結構材料。硅基光、電器件集成一直是人們所追求的目標。但由于硅是間接帶隙,如何提高硅基材料發光效率就成為一個亟待解決的問題。雖經多年研究,但進展緩慢。人們目前正致力于探索硅基納米材料(納米Si/SiO2),硅基SiGeC體系的Si1-yCy/Si1-xGex低維結構,Ge/Si量子點和量子點超晶格材料,Si/SiC量子點材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發光器件和有關納米硅的受激放大現象的報道,使人們看到了一線希望。
另一方面,GeSi/Si應變層超晶格材料,因其在新一代移動通信上的重要應用前景,而成為目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止頻率已達200GHz,HBT最高振蕩頻率為160GHz,噪音在10GHz下為0.9db,其性能可與GaAs器件相媲美。
盡管GaAs/Si和InP/Si是實現光電子集成理想的材料體系,但由于晶格失配和熱膨脹系數等不同造成的高密度失配位錯而導致器件性能退化和失效,防礙著它的使用化。最近,Motolora等公司宣稱,他們在12英寸的硅襯底上,用鈦酸鍶作協變層(柔性層),成功的生長了器件級的GaAs外延薄膜,取得了突破性的進展。
2.4一維量子線、零維量子點半導體微結構材料
基于量子尺寸效應、量子干涉效應,量子隧穿效應和庫侖阻效應以及非線性光學效應等的低維半導體材料是一種人工構造(通過能帶工程實施)的新型半導體材料,是新一代微電子、光電子器件和電路的基礎。它的發展與應用,極有可能觸發新的技術革命。
目前低維半導體材料生長與制備主要集中在幾個比較成熟的材料體系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在納米微電子和光電子研制方面取得了重大進展。俄羅斯約飛技術物理所MBE小組,柏林的俄德聯合研制小組和中科院半導體所半導體材料科學重點實驗室的MBE小組等研制成功的In(Ga)As/GaAs高功率量子點激光器,工作波長lμm左右,單管室溫連續輸出功率高達3.6~4W。特別應當指出的是我國上述的MBE小組,2001年通過在高功率量子點激光器的有源區材料結構中引入應力緩解層,抑制了缺陷和位錯的產生,提高了量子點激光器的工作壽命,室溫下連續輸出功率為1W時工作壽命超過5000小時,這是大功率激光器的一個關鍵參數,至今未見國外報道。
在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進展,1994年日本NTT就研制成功溝道長度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國又報道了可在室溫工作的單電子開關器件,1998年Yauo等人采用0.25微米工藝技術實現了128Mb的單電子存貯器原型樣機的制造,這是在單電子器件在高密度存貯電路的應用方面邁出的關鍵一步。目前,基于量子點的自適應網絡計算機,單光子源和應用于量子計算的量子比特的構建等方面的研究也正在進行中。
與半導體超晶格和量子點結構的生長制備相比,高度有序的半導體量子線的制備技術難度較大。中科院半導體所半導體材料科學重點實驗室的MBE小組,在繼利用MBE技術和SK生長模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結構的基礎上,對InAs/InAlAs量子線超晶格的空間自對準(垂直或斜對準)的物理起因和生長控制進行了研究,取得了較大進展。
王中林教授領導的喬治亞理工大學的材料科學與工程系和化學與生物化學系的研究小組,基于無催化劑、控制生長條件的氧化物粉末的熱蒸發技術,成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導體氧化物納米帶,它們與具有圓柱對稱截面的中空納米管或納米線不同,這些原生的納米帶呈現出高純、結構均勻和單晶體,幾乎無缺陷和位錯;納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長度可達數毫米。這種半導體氧化物納米帶是一個理想的材料體系,可以用來研究載流子維度受限的輸運現象和基于它的功能器件制造。香港城市大學李述湯教授和瑞典隆德大學固體物理系納米中心的LarsSamuelson教授領導的小組,分別在SiO2/Si和InAs/InP半導體量子線超晶格結構的生長制各方面也取得了重要進展。
低維半導體結構制備的方法很多,主要有:微結構材料生長和精細加工工藝相結合的方法,應變自組裝量子線、量子點材料生長技術,圖形化襯底和不同取向晶面選擇生長技術,單原子操縱和加工技術,納米結構的輻照制備技術,及其在沸石的籠子中、納米碳管和溶液中等通過物理或化學方法制備量子點和量子線的技術等。目前發展的主要趨勢是尋找原子級無損傷加工方法和納米結構的應變自組裝可控生長技術,以求獲得大小、形狀均勻、密度可控的無缺陷納米結構。
2.5寬帶隙半導體材料
寬帶隙半導體材主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導率、高電子飽和漂移速度和大臨界擊穿電壓等特點,成為研制高頻大功率、耐高溫、抗輻照半導體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國防等方面有著廣泛的應用前景。另外,III族氮化物也是很好的光電子材料,在藍、綠光發光二極管(LED)和紫、藍、綠光激光器(LD)以及紫外探測器等應用方面也顯示了廣泛的應用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍綠光發光材料的研究熱點。目前,GaN基藍綠光發光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W。在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達140GHz,fT=67GHz,跨導為260ms/mm;HEMT器件也相繼問世,發展很快。此外,256×256GaN基紫外光電焦平面陣列探測器也已研制成功。特別值得提出的是,日本Sumitomo電子工業有限公司2000年宣稱,他們采用熱力學方法已研制成功2英寸GaN單晶材料,這將有力的推動藍光激光器和GaN基電子器件的發展。另外,近年來具有反常帶隙彎曲的窄禁帶InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重視,這是因為它們在長波長光通信用高T0光源和太陽能電池等方面顯示了重要應用前景。
以Cree公司為代表的體SiC單晶的研制已取得突破性進展,2英寸的4H和6HSiC單晶與外延片,以及3英寸的4HSiC單晶己有商品出售;以SiC為GaN基材料襯低的藍綠光LED業已上市,并參于與以藍寶石為襯低的GaN基發光器件的竟爭。其他SiC相關高溫器件的研制也取得了長足的進步。目前存在的主要問題是材料中的缺陷密度高,且價格昂貴。
II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國3M公司成功地解決了II-VI族的P型摻雜難點而得到迅速發展。1991年3M公司利用MBE技術率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導體激光(材料)器件研制的。經過多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過1000小時,但離使用差距尚大,加之GaN基材料的迅速發展和應用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區材料的完整性,特別是要降低由非化學配比導致的點缺陷密度和進一步降低失配位錯和解決歐姆接觸等問題,仍是該材料體系走向實用化前必須要解決的問題。
寬帶隙半導體異質結構材料往往也是典型的大失配異質結構材料,所謂大失配異質結構材料是指晶格常數、熱膨脹系數或晶體的對稱性等物理參數有較大差異的材料體系,如GaN/藍寶石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引發界面處大量位錯和缺陷的產生,極大地影響著微結構材料的光電性能及其器件應用。如何避免和消除這一負面影響,是目前材料制備中的一個迫切要解決的關鍵科學問題。這個問題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應用領域。
目前,除SiC單晶襯低材料,GaN基藍光LED材料和器件已有商品出售外,大多數高溫半導體材料仍處在實驗室研制階段,不少影響這類材料發展的關鍵問題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長與N型摻雜,II-VI族材料的退化機理等仍是制約這些材料實用化的關鍵問題,國內外雖已做了大量的研究,至今尚未取得重大突破。
3光子晶體
光子晶體是一種人工微結構材料,介電常數周期的被調制在與工作波長相比擬的尺度,來自結構單元的散射波的多重干涉形成一個光子帶隙,與半導體材料的電子能隙相似,并可用類似于固態晶體中的能帶論來描述三維周期介電結構中光波的傳播,相應光子晶體光帶隙(禁帶)能量的光波模式在其中的傳播是被禁止的。如果光子晶體的周期性被破壞,那么在禁帶中也會引入所謂的“施主”和“受主”模,光子態密度隨光子晶體維度降低而量子化。如三維受限的“受主”摻雜的光子晶體有希望制成非常高Q值的單模微腔,從而為研制高質量微腔激光器開辟新的途徑。光子晶體的制備方法主要有:聚焦離子束(FIB)結合脈沖激光蒸發方法,即先用脈沖激光蒸發制備如Ag/MnO多層膜,再用FIB注入隔離形成一維或二維平面陣列光子晶體;基于功能粒子(磁性納米顆粒Fe2O3,發光納米顆粒CdS和介電納米顆粒TiO2)和共軛高分子的自組裝方法,可形成適用于可見光范圍的三維納米顆粒光子晶體;二維多空硅也可制作成一個理想的3-5μm和1.5μm光子帶隙材料等。目前,二維光子晶體制造已取得很大進展,但三維光子晶體的研究,仍是一個具有挑戰性的課題。最近,Campbell等人提出了全息光柵光刻的方法來制造三維光子晶體,取得了進展。
4量子比特構建與材料
隨著微電子技術的發展,計算機芯片集成度不斷增高,器件尺寸越來越?。╪m尺度)并最終將受到器件工作原理和工藝技術限制,而無法滿足人類對更大信息量的需求。為此,發展基于全新原理和結構的功能強大的計算機是21世紀人類面臨的巨大挑戰之一。1994年Shor基于量子態疊加性提出的量子并行算法并證明可輕而易舉地破譯目前廣泛使用的公開密鑰Rivest,Shamir和Adlman(RSA)體系,引起了人們的廣泛重視。
所謂量子計算機是應用量子力學原理進行計算的裝置,理論上講它比傳統計算機有更快的運算速度,更大信息傳遞量和更高信息安全保障,有可能超越目前計算機理想極限。實現量子比特構造和量子計算機的設想方案很多,其中最引人注目的是Kane最近提出的一個實現大規模量子計算的方案。其核心是利用硅納米電子器件中磷施主核自旋進行信息編碼,通過外加電場控制核自旋間相互作用實現其邏輯運算,自旋測量是由自旋極化電子電流來完成,計算機要工作在mK的低溫下。
這種量子計算機的最終實現依賴于與硅平面工藝兼容的硅納米電子技術的發展。除此之外,為了避免雜質對磷核自旋的干擾,必需使用高純(無雜質)和不存在核自旋不等于零的硅同位素(29Si)的硅單晶;減小SiO2絕緣層的無序漲落以及如何在硅里摻入規則的磷原子陣列等是實現量子計算的關鍵。量子態在傳輸,處理和存儲過程中可能因環境的耦合(干擾),而從量子疊加態演化成經典的混合態,即所謂失去相干,特別是在大規模計算中能否始終保持量子態間的相干是量子計算機走向實用化前所必需克服的難題。
5發展我國半導體材料的幾點建議
鑒于我國目前的工業基礎,國力和半導體材料的發展水平,提出以下發展建議供參考。
5.1硅單晶和外延材料
硅材料作為微電子技術的主導地位至少到本世紀中葉都不會改變,至今國內各大集成電路制造廠家所需的硅片基本上是依賴進口。目前國內雖已可拉制8英寸的硅單晶和小批量生產6英寸的硅外延片,然而都未形成穩定的批量生產能力,更談不上規模生產。建議國家集中人力和財力,首先開展8英寸硅單晶實用化和6英寸硅外延片研究開發,在“十五”的后期,爭取做到8英寸集成電路生產線用硅單晶材料的國產化,并有6~8英寸硅片的批量供片能力。到2010年左右,我國應有8~12英寸硅單晶、片材和8英寸硅外延片的規模生產能力;更大直徑的硅單晶、片材和外延片也應及時布點研制。另外,硅多晶材料生產基地及其相配套的高純石英、氣體和化學試劑等也必需同時給以重視,只有這樣,才能逐步改觀我國微電子技術的落后局面,進入世界發達國家之林。
5.2GaAs及其有關化合物半導體單晶
材料發展建議
GaAs、InP等單晶材料同國外的差距主要表現在拉晶和晶片加工設備落后,沒有形成生產能力。相信在國家各部委的統一組織、領導下,并爭取企業介入,建立我國自己的研究、開發和生產聯合體,取各家之長,分工協作,到2010年趕上世界先進水平是可能的。要達到上述目的,到“十五”末應形成以4英寸單晶為主2-3噸/年的SI-GaAs和3-5噸/年摻雜GaAs、InP單晶和開盒就用晶片的生產能力,以滿足我國不斷發展的微電子和光電子工業的需術。到2010年,應當實現4英寸GaAs生產線的國產化,并具有滿足6英寸線的供片能力。
5.3發展超晶格、量子阱和一維、零維半導體
微結構材料的建議
(1)超晶格、量子阱材料
從目前我國國力和我們已有的基礎出發,應以三基色(超高亮度紅、綠和藍光)材料和光通信材料為主攻方向,并兼顧新一代微電子器件和電路的需求,加強MBE和MOCVD兩個基地的建設,引進必要的適合批量生產的工業型MBE和MOCVD設備并著重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基藍綠光材料,InGaAs/InP和InGaAsP/InP等材料體系的實用化研究是當務之急,爭取在“十五”末,能滿足國內2、3和4英寸GaAs生產線所需要的異質結材料。到2010年,每年能具備至少100萬平方英寸MBE和MOCVD微電子和光電子微結構材料的生產能力。達到本世紀初的國際水平。
寬帶隙高溫半導體材料如SiC,GaN基微電子材料和單晶金剛石薄膜以及ZnO等材料也應擇優布點,分別做好研究與開發工作。
1半導體材料的戰略地位
上世紀中葉,單晶硅和半導體晶體管的發明及其硅集成電路的研制成功,導致了電子工業革命;上世紀70年代初石英光導纖維材料和GaAs激光器的發明,促進了光纖通信技術迅速發展并逐步形成了高新技術產業,使人類進入了信息時代。超晶格概念的提出及其半導體超晶格、量子阱材料的研制成功,徹底改變了光電器件的設計思想,使半導體器件的設計與制造從“雜質工程”發展到“能帶工程”。納米科學技術的發展和應用,將使人類能從原子、分子或納米尺度水平上控制、操縱和制造功能強大的新型器件與電路,必將深刻地影響著世界的政治、經濟格局和軍事對抗的形式,徹底改變人們的生活方式。
2幾種主要半導體材料的發展現狀與趨勢
2.1硅材料
從提高硅集成電路成品率,降低成本看,增大直拉硅(CZ-Si)單晶的直徑和減小微缺陷的密度仍是今后CZ-Si發展的總趨勢。目前直徑為8英寸(200mm)的Si單晶已實現大規模工業生產,基于直徑為12英寸(300mm)硅片的集成電路(IC‘s)技術正處在由實驗室向工業生產轉變中。目前300mm,0.18μm工藝的硅ULSI生產線已經投入生產,300mm,0.13μm工藝生產線也將在2003年完成評估。18英寸重達414公斤的硅單晶和18英寸的硅園片已在實驗室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。
從進一步提高硅IC‘S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會成為硅材料發展的主流。另外,SOI材料,包括智能剝離(Smartcut)和SIMOX材料等也發展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發中。
理論分析指出30nm左右將是硅MOS集成電路線寬的“極限”尺寸。這不僅是指量子尺寸效應對現有器件特性影響所帶來的物理限制和光刻技術的限制問題,更重要的是將受硅、SiO2自身性質的限制。盡管人們正在積極尋找高K介電絕緣材料(如用Si3N4等來替代SiO2),低K介電互連材料,用Cu代替Al引線以及采用系統集成芯片技術等來提高ULSI的集成度、運算速度和功能,但硅將最終難以滿足人類不斷的對更大信息量需求。為此,人們除尋求基于全新原理的量子計算和DNA生物計算等之外,還把目光放在以GaAs、InP為基的化合物半導體材料,特別是二維超晶格、量子阱,一維量子線與零維量子點材料和可與硅平面工藝兼容GeSi合金材料等,這也是目前半導體材料研發的重點。
2.2GaAs和InP單晶材料
GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點;在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨特的優勢。
目前,世界GaAs單晶的總年產量已超過200噸,其中以低位錯密度的垂直梯度凝固法(VGF)和水平(HB)方法生長的2-3英寸的導電GaAs襯底材料為主;近年來,為滿足高速移動通信的迫切需求,大直徑(4,6和8英寸)的SI-GaAs發展很快。美國莫托羅拉公司正在籌建6英寸的SI-GaAs集成電路生產線。InP具有比GaAs更優越的高頻性能,發展的速度更快,但研制直徑3英寸以上大直徑的InP單晶的關鍵技術尚未完全突破,價格居高不下。
GaAs和InP單晶的發展趨勢是:
(1)。增大晶體直徑,目前4英寸的SI-GaAs已用于生產,預計本世紀初的頭幾年直徑為6英寸的SI-GaAs也將投入工業應用。
(2)。提高材料的電學和光學微區均勻性。
(3)。降低單晶的缺陷密度,特別是位錯。
(4)。GaAs和InP單晶的VGF生長技術發展很快,很有可能成為主流技術。
2.3半導體超晶格、量子阱材料
半導體超薄層微結構材料是基于先進生長技術(MBE,MOCVD)的新一代人工構造材料。它以全新的概念改變著光電子和微電子器件的設計思想,出現了“電學和光學特性可剪裁”為特征的新范疇,是新一代固態量子器件的基礎材料。
(1)Ⅲ-V族超晶格、量子阱材料。
GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和應變補償材料體系已發展得相當成熟,已成功地用來制造超高速,超高頻微電子器件和單片集成電路。高電子遷移率晶體管(HEMT),贗配高電子遷移率晶體管(P-HEMT)器件最好水平已達fmax=600GHz,輸出功率58mW,功率增益6.4db;雙異質結雙極晶體管(HBT)的最高頻率fmax也已高達500GHz,HEMT邏輯電路研制也發展很快?;谏鲜霾牧象w系的光通信用1.3μm和1.5μm的量子阱激光器和探測器,紅、黃、橙光發光二極管和紅光激光器以及大功率半導體量子阱激光器已商品化;表面光發射器件和光雙穩器件等也已達到或接近達到實用化水平。目前,研制高質量的1.5μm分布反饋(DFB)激光器和電吸收(EA)調制器單片集成InP基多量子阱材料和超高速驅動電路所需的低維結構材料是解決光纖通信瓶頸問題的關鍵,在實驗室西門子公司已完成了80×40Gbps傳輸40km的實驗。另外,用于制造準連續兆瓦級大功率激光陣列的高質量量子阱材料也受到人們的重視。
雖然常規量子阱結構端面發射激光器是目前光電子領域占統治地位的有源器件,但由于其有源區極?。ā?.01μm)端面光電災變損傷,大電流電熱燒毀和光束質量差一直是此類激光器的性能改善和功率提高的難題。采用多有源區量子級聯耦合是解決此難題的有效途徑之一。我國早在1999年,就研制成功980nmInGaAs帶間量子級聯激光器,輸出功率達5W以上;2000年初,法國湯姆遜公司又報道了單個激光器準連續輸出功率超過10瓦好結果。最近,我國的科研工作者又提出并開展了多有源區縱向光耦合垂直腔面發射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質量的新型激光器,在未來光通信、光互聯與光電信息處理方面有著良好的應用前景。
為克服PN結半導體激光器的能隙對激光器波長范圍的限制,1994年美國貝爾實驗室發明了基于量子阱內子帶躍遷和阱間共振隧穿的量子級聯激光器,突破了半導體能隙對波長的限制。自從1994年InGaAs/InAIAs/InP量子級聯激光器(QCLs)發明以來,Bell實驗室等的科學家,在過去的7年多的時間里,QCLs在向大功率、高溫和單膜工作等研究方面取得了顯著的進展。2001年瑞士Neuchatel大學的科學家采用雙聲子共振和三量子阱有源區結構使波長為9.1μm的QCLs的工作溫度高達312K,連續輸出功率3mW.量子級聯激光器的工作波長已覆蓋近紅外到遠紅外波段(3-87μm),并在光通信、超高分辨光譜、超高靈敏氣體傳感器、高速調制器和無線光學連接等方面顯示出重要的應用前景。中科院上海微系統和信息技術研究所于1999年研制成功120K5μm和250K8μm的量子級聯激光器;中科院半導體研究所于2000年又研制成功3.7μm室溫準連續應變補償量子級聯激光器,使我國成為能研制這類高質量激光器材料為數不多的幾個國家之一。
目前,Ⅲ-V族超晶格、量子阱材料作為超薄層微結構材料發展的主流方向,正從直徑3英寸向4英寸過渡;生產型的MBE和M0CVD設備已研制成功并投入使用,每臺年生產能力可高達3.75×104片4英寸或1.5×104片6英寸。英國卡迪夫的MOCVD中心,法國的PicogigaMBE基地,美國的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有這種外延材料出售。生產型MBE和MOCVD設備的成熟與應用,必然促進襯底材料設備和材料評價技術的發展。
(2)硅基應變異質結構材料。
硅基光、電器件集成一直是人們所追求的目標。但由于硅是間接帶隙,如何提高硅基材料發光效率就成為一個亟待解決的問題。雖經多年研究,但進展緩慢。人們目前正致力于探索硅基納米材料(納米Si/SiO2),硅基SiGeC體系的Si1-yCy/Si1-xGex低維結構,Ge/Si量子點和量子點超晶格材料,Si/SiC量子點材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發光器件和有關納米硅的受激放大現象的報道,使人們看到了一線希望。
另一方面,GeSi/Si應變層超晶格材料,因其在新一代移動通信上的重要應用前景,而成為目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止頻率已達200GHz,HBT最高振蕩頻率為160GHz,噪音在10GHz下為0.9db,其性能可與GaAs器件相媲美。
盡管GaAs/Si和InP/Si是實現光電子集成理想的材料體系,但由于晶格失配和熱膨脹系數等不同造成的高密度失配位錯而導致器件性能退化和失效,防礙著它的使用化。最近,Motolora等公司宣稱,他們在12英寸的硅襯底上,用鈦酸鍶作協變層(柔性層),成功的生長了器件級的GaAs外延薄膜,取得了突破性的進展。
2.4一維量子線、零維量子點半導體微結構材料
基于量子尺寸效應、量子干涉效應,量子隧穿效應和庫侖阻效應以及非線性光學效應等的低維半導體材料是一種人工構造(通過能帶工程實施)的新型半導體材料,是新一代微電子、光電子器件和電路的基礎。它的發展與應用,極有可能觸發新的技術革命。
目前低維半導體材料生長與制備主要集中在幾個比較成熟的材料體系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在納米微電子和光電子研制方面取得了重大進展。俄羅斯約飛技術物理所MBE小組,柏林的俄德聯合研制小組和中科院半導體所半導體材料科學重點實驗室的MBE小組等研制成功的In(Ga)As/GaAs高功率量子點激光器,工作波長lμm左右,單管室溫連續輸出功率高達3.6~4W.特別應當指出的是我國上述的MBE小組,2001年通過在高功率量子點激光器的有源區材料結構中引入應力緩解層,抑制了缺陷和位錯的產生,提高了量子點激光器的工作壽命,室溫下連續輸出功率為1W時工作壽命超過5000小時,這是大功率激光器的一個關鍵參數,至今未見國外報道。
在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進展,1994年日本NTT就研制成功溝道長度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國又報道了可在室溫工作的單電子開關器件,1998年Yauo等人采用0.25微米工藝技術實現了128Mb的單電子存貯器原型樣機的制造,這是在單電子器件在高密度存貯電路的應用方面邁出的關鍵一步。目前,基于量子點的自適應網絡計算機,單光子源和應用于量子計算的量子比特的構建等方面的研究也正在進行中。
與半導體超晶格和量子點結構的生長制備相比,高度有序的半導體量子線的制備技術難度較大。中科院半導體所半導體材料科學重點實驗室的MBE小組,在繼利用MBE技術和SK生長模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結構的基礎上,對InAs/InAlAs量子線超晶格的空間自對準(垂直或斜對準)的物理起因和生長控制進行了研究,取得了較大進展。
王中林教授領導的喬治亞理工大學的材料科學與工程系和化學與生物化學系的研究小組,基于無催化劑、控制生長條件的氧化物粉末的熱蒸發技術,成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導體氧化物納米帶,它們與具有圓柱對稱截面的中空納米管或納米線不同,這些原生的納米帶呈現出高純、結構均勻和單晶體,幾乎無缺陷和位錯;納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長度可達數毫米。這種半導體氧化物納米帶是一個理想的材料體系,可以用來研究載流子維度受限的輸運現象和基于它的功能器件制造。香港城市大學李述湯教授和瑞典隆德大學固體物理系納米中心的LarsSamuelson教授領導的小組,分別在SiO2/Si和InAs/InP半導體量子線超晶格結構的生長制各方面也取得了重要進展。
低維半導體結構制備的方法很多,主要有:微結構材料生長和精細加工工藝相結合的方法,應變自組裝量子線、量子點材料生長技術,圖形化襯底和不同取向晶面選擇生長技術,單原子操縱和加工技術,納米結構的輻照制備技術,及其在沸石的籠子中、納米碳管和溶液中等通過物理或化學方法制備量子點和量子線的技術等。目前發展的主要趨勢是尋找原子級無損傷加工方法和納米結構的應變自組裝可控生長技術,以求獲得大小、形狀均勻、密度可控的無缺陷納米結構。
2.5寬帶隙半導體材料
寬帶隙半導體材主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導率、高電子飽和漂移速度和大臨界擊穿電壓等特點,成為研制高頻大功率、耐高溫、抗輻照半導體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國防等方面有著廣泛的應用前景。另外,III族氮化物也是很好的光電子材料,在藍、綠光發光二極管(LED)和紫、藍、綠光激光器(LD)以及紫外探測器等應用方面也顯示了廣泛的應用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍綠光發光材料的研究熱點。目前,GaN基藍綠光發光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W.在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達140GHz,fT=67GHz,跨導為260ms/mm;HEMT器件也相繼問世,發展很快。此外,256×256GaN基紫外光電焦平面陣列探測器也已研制成功。特別值得提出的是,日本Sumitomo電子工業有限公司2000年宣稱,他們采用熱力學方法已研制成功2英寸GaN單晶材料,這將有力的推動藍光激光器和GaN基電子器件的發展。另外,近年來具有反常帶隙彎曲的窄禁帶InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重視,這是因為它們在長波長光通信用高T0光源和太陽能電池等方面顯示了重要應用前景。
以Cree公司為代表的體SiC單晶的研制已取得突破性進展,2英寸的4H和6HSiC單晶與外延片,以及3英寸的4HSiC單晶己有商品出售;以SiC為GaN基材料襯低的藍綠光LED業已上市,并參于與以藍寶石為襯低的GaN基發光器件的竟爭。其他SiC相關高溫器件的研制也取得了長足的進步。目前存在的主要問題是材料中的缺陷密度高,且價格昂貴。
II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國3M公司成功地解決了II-VI族的P型摻雜難點而得到迅速發展。1991年3M公司利用MBE技術率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導體激光(材料)器件研制的。經過多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過1000小時,但離使用差距尚大,加之GaN基材料的迅速發展和應用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區材料的完整性,特別是要降低由非化學配比導致的點缺陷密度和進一步降低失配位錯和解決歐姆接觸等問題,仍是該材料體系走向實用化前必須要解決的問題。
寬帶隙半導體異質結構材料往往也是典型的大失配異質結構材料,所謂大失配異質結構材料是指晶格常數、熱膨脹系數或晶體的對稱性等物理參數有較大差異的材料體系,如GaN/藍寶石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引發界面處大量位錯和缺陷的產生,極大地影響著微結構材料的光電性能及其器件應用。如何避免和消除這一負面影響,是目前材料制備中的一個迫切要解決的關鍵科學問題。這個問題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應用領域。
目前,除SiC單晶襯低材料,GaN基藍光LED材料和器件已有商品出售外,大多數高溫半導體材料仍處在實驗室研制階段,不少影響這類材料發展的關鍵問題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長與N型摻雜,II-VI族材料的退化機理等仍是制約這些材料實用化的關鍵問題,國內外雖已做了大量的研究,至今尚未取得重大突破。
3光子晶體
光子晶體是一種人工微結構材料,介電常數周期的被調制在與工作波長相比擬的尺度,來自結構單元的散射波的多重干涉形成一個光子帶隙,與半導體材料的電子能隙相似,并可用類似于固態晶體中的能帶論來描述三維周期介電結構中光波的傳播,相應光子晶體光帶隙(禁帶)能量的光波模式在其中的傳播是被禁止的。如果光子晶體的周期性被破壞,那么在禁帶中也會引入所謂的“施主”和“受主”模,光子態密度隨光子晶體維度降低而量子化。如三維受限的“受主”摻雜的光子晶體有希望制成非常高Q值的單模微腔,從而為研制高質量微腔激光器開辟新的途徑。光子晶體的制備方法主要有:聚焦離子束(FIB)結合脈沖激光蒸發方法,即先用脈沖激光蒸發制備如Ag/MnO多層膜,再用FIB注入隔離形成一維或二維平面陣列光子晶體;基于功能粒子(磁性納米顆粒Fe2O3,發光納米顆粒CdS和介電納米顆粒TiO2)和共軛高分子的自組裝方法,可形成適用于可光范圍的三維納米顆粒光子晶體;二維多空硅也可制作成一個理想的3-5μm和1.5μm光子帶隙材料等。目前,二維光子晶體制造已取得很大進展,但三維光子晶體的研究,仍是一個具有挑戰性的課題。最近,Campbell等人提出了全息光柵光刻的方法來制造三維光子晶體,取得了進展。
4量子比特構建與材料
隨著微電子技術的發展,計算機芯片集成度不斷增高,器件尺寸越來越?。╪m尺度)并最終將受到器件工作原理和工藝技術限制,而無法滿足人類對更大信息量的需求。為此,發展基于全新原理和結構的功能強大的計算機是21世紀人類面臨的巨大挑戰之一。1994年Shor基于量子態疊加性提出的量子并行算法并證明可輕而易舉地破譯目前廣泛使用的公開密鑰Rivest,Shamir和Adlman(RSA)體系,引起了人們的廣泛重視。
所謂量子計算機是應用量子力學原理進行計的裝置,理論上講它比傳統計算機有更快的運算速度,更大信息傳遞量和更高信息安全保障,有可能超越目前計算機理想極限。實現量子比特構造和量子計算機的設想方案很多,其中最引人注目的是Kane最近提出的一個實現大規模量子計算的方案。其核心是利用硅納米電子器件中磷施主核自旋進行信息編碼,通過外加電場控制核自旋間相互作用實現其邏輯運算,自旋測量是由自旋極化電子電流來完成,計算機要工作在mK的低溫下。
這種量子計算機的最終實現依賴于與硅平面工藝兼容的硅納米電子技術的發展。除此之外,為了避免雜質對磷核自旋的干擾,必需使用高純(無雜質)和不存在核自旋不等于零的硅同位素(29Si)的硅單晶;減小SiO2絕緣層的無序漲落以及如何在硅里摻入規則的磷原子陣列等是實現量子計算的關鍵。量子態在傳輸,處理和存儲過程中可能因環境的耦合(干擾),而從量子疊加態演化成經典的混合態,即所謂失去相干,特別是在大規模計算中能否始終保持量子態間的相干是量子計算機走向實用化前所必需克服的難題。
5發展我國半導體材料的幾點建議
鑒于我國目前的工業基礎,國力和半導體材料的發展水平,提出以下發展建議供參考。
5.1硅單晶和外延材料硅材料作為微電子技術的主導地位
至少到本世紀中葉都不會改變,至今國內各大集成電路制造廠家所需的硅片基本上是依賴進口。目前國內雖已可拉制8英寸的硅單晶和小批量生產6英寸的硅外延片,然而都未形成穩定的批量生產能力,更談不上規模生產。建議國家集中人力和財力,首先開展8英寸硅單晶實用化和6英寸硅外延片研究開發,在“十五”的后期,爭取做到8英寸集成電路生產線用硅單晶材料的國產化,并有6~8英寸硅片的批量供片能力。到2010年左右,我國應有8~12英寸硅單晶、片材和8英寸硅外延片的規模生產能力;更大直徑的硅單晶、片材和外延片也應及時布點研制。另外,硅多晶材料生產基地及其相配套的高純石英、氣體和化學試劑等也必需同時給以重視,只有這樣,才能逐步改觀我國微電子技術的落后局面,進入世界發達國家之林。
5.2GaAs及其有關化合物半導體單晶材料發展建議
GaAs、InP等單晶材料同國外的差距主要表現在拉晶和晶片加工設備落后,沒有形成生產能力。相信在國家各部委的統一組織、領導下,并爭取企業介入,建立我國自己的研究、開發和生產聯合體,取各家之長,分工協作,到2010年趕上世界先進水平是可能的。要達到上述目的,到“十五”末應形成以4英寸單晶為主2-3噸/年的SI-GaAs和3-5噸/年摻雜GaAs、InP單晶和開盒就用晶片的生產能力,以滿足我國不斷發展的微電子和光電子工業的需術。到2010年,應當實現4英寸GaAs生產線的國產化,并具有滿足6英寸線的供片能力。
5.3發展超晶格、量子阱和一維、零維半導體微結構材料的建議
(1)超晶格、量子阱材料從目前我國國力和我們已有的基礎出發,應以三基色(超高亮度紅、綠和藍光)材料和光通信材料為主攻方向,并兼顧新一代微電子器件和電路的需求,加強MBE和MOCVD兩個基地的建設,引進必要的適合批量生產的工業型MBE和MOCVD設備并著重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基藍綠光材料,InGaAs/InP和InGaAsP/InP等材料體系的實用化研究是當務之急,爭取在“十五”末,能滿足國內2、3和4英寸GaAs生產線所需要的異質結材料。到2010年,每年能具備至少100萬平方英寸MBE和MOCVD微電子和光電子微結構材料的生產能力。達到本世紀初的國際水平。
寬帶隙高溫半導體材料如SiC,GaN基微電子材料和單晶金剛石薄膜以及ZnO等材料也應擇優布點,分別做好研究與開發工作。
近年來,現代化木材加工工業發展迅猛,木質復合材料的加工因此得到了高速發展。隨著人們環保意識的增強,人造板工業,如纖維板、刨花板、膠合板、層積材和竹木業等木質復合材料的出現得到了越來越多的發展空間。這些傳統的木工刀具材料已不能滿足工藝要求。目前我國是亞洲生產中密度纖維板(MDF)最大的國家。2001年強化木地板實際產量已增至6000萬m2,如此大量增長的需求對切削加工工具提出了新的要求。在切削人造板等木質復合材料時使用的刀具材料主要是硬質合金,硬質合金的耐磨性、耐熱性和硬度很高。但由于木材本身具有很高的各向異性結構,使得與刀具的摩擦系數很大,而且木質復合材料本身既含有造成刀具機械擦傷的硬質點,又因某些人造板表面還有難以加工的硬質涂層,有引發刀具發生化學腐蝕的酸性介質,這些都會加劇刀具磨損和腐蝕,不僅大大縮短了使用壽命,而且嚴重降低了產品的質量,進而影響了產品的加工成本和生產效率?,F有的硬質合金刀具在耐磨和耐腐蝕性方面已經不能滿足要求,為了達到良好的經濟效益和社會效益,市場迫切需要高性能的、高質量的木工加工刀具。
一、木工刀具新材料
通常用于木工刀具的切削材料主要為碳素工具鋼、合金工具鋼、斯太立合金、高速鋼等,這些材料常用于低切削速度、低進料速度和加工精度要求不高的場合,如刨刀、鋸片、銑刀等,一般用于實木加工。隨著纖維板、刨花板、膠合板和層積材等木質復合材料的出現,這些傳統的切削材料已不能滿足工藝要求。原用于金屬加工的硬質合金材料,現廣泛地應用于木材加工用刀具,并逐漸替代了高速鋼等材料,提了生產效率和加工質量。常用木工刀具的物理機械性能如下表1示:
從上表可知,聚晶金剛石和立方氮化硼具有極高的硬度和耐磨性,特別是聚晶金剛石,其顯微硬度可達10000HV,是刀具材料中最硬的材料。同時它的摩擦系數小,熱膨脹系數低,與非鐵金屬無親和力,切屑易流出,導熱率高,切削時不易產生積屑瘤,可以避免熱量對刀刃和工件的影響,因此刀刃不易鈍化,切削變形小,可以獲得較高質量的表面。能有效地加工非鐵金屬材料和非金屬材料,如銅、鋁等有色金屬及其合金、陶瓷、各種纖維和顆粒加強的復合材料(尤其是實木和膠合板等復合材料)。超硬刀具材料包括金剛石刀具和立方氮化硼刀具,其中以人造金剛石復合片(PCD)刀具及立方氮化硼復合片(PCBN)刀具占主導地位。超硬刀具近40%用于木工刀具。PCD木工刀具主要可分為PCD鋸片和PCD成形銑刀兩大類,PCD鋸片是將PCD刀齒焊接在鋸片基體上再經刃磨后形成,其結構與硬質合金鋸片類似,不同之處是PCD鋸片的前角較硬質合金鋸片小,一般為50~100,楔角為650~750,鋸片規格一般為Φ100~450mm,鋸齒數可多達72齒。PCD成形銑刀的主要品種有用于加工實木地板、復合地板、強化木地板、竹木地板的修邊刀、榫槽刀及PCD家具成形刀等。PCD成形銑刀的切削速度可達3000m/min,走刀量可達每分鐘數米,刀具耐用度是硬質合金刀具的幾十倍甚至幾百倍,由于具有高效率、高耐用度等特點,尤其適合于大批量加工。
二、木工刀具的新技術
隨著木工行業的技術進步和快速發展,木材加工企業的很多設備都需要根據工藝要求,進行特殊設計和制造。這些專用設備具有特別的用途、很高的切削速度和很大的生產能力,因此,對刀具的設計、刀體材料、切削材料、重量和精度都有很高的要求。目前雙端銑刀具的線速度已達110m/s、進給速度高達180m/min,最高可達300m/min;最快的木工四面刨床的進給速度為600m/min;CNC加工中心的主同高速已達5萬r/min,進料速度達到200m/min。高速切削能有效地提高生產效率,提高設備的運轉效率,同時可以減小刀具的切削力,提高工件的加工表面質量,延長刀具的壽命。超微顆粒、特殊牌號的硬質合金和金剛石的廣泛應用,為高速切削刀具提供更廣闊的發展空間。
制造精度隨著機械加工業的發展,制造木工刀具的機械精度越來越高。先進的檢測儀器和檢測手段,提高了木工刀具的制造精度,刀具的公差已達微米級精度。木工刀具精度等級的提高,不僅提高了工件的加工質量,也為高速高效切削提供可靠的保證。安裝精度除刀具的制造精度外,刀具在機床上的精確安裝也非常重要,它不僅影響刀具本身,也影響著機床的使用和壽命。改善刀具的夾持方式是提高刀具安裝精度的有效方法。通常刀具都是帶有中心孔的盤類刀具,與主軸的配合一般為基孔制,小間隙配合,在低速運轉時,不會產生顯著影響。但對于四面刨和雙端銑類機床,在使用盤類刀具時,應采用液壓夾緊軸套,完全消除了液壓軸套和刀軸之間以及軸套和刀具之間的配合間隙,保證了刀具回轉中心和刀軸旋轉軸線一致,提高了刀具回轉精度、定中心精度和動平衡精度。對于CNC設備,則采用錐度定位夾緊,如ISO、SK系列錐度夾頭、HSK中空錐(下轉第221頁)(上接第216頁)度夾頭等,這種夾持方式提高了刀具的定位精度。輕金屬刀體,可以降低刀具的重量,提升動平衡等級。金剛石刀具的制造精度已達微米級精度,采用先進的夾緊技術,不僅提高了刀具的裝夾和定位精度,而且提高了刀具的運轉精度,保證了產品的加工質量,同時也延長了刀具的使用壽命。
三、木工刀具的新工藝
二、“Web主導下材料工程類
學生自主案例教學法”的實施方案在實施前,對實施的過程和步驟進行了認真分析,對實施方案的總體框架和實施具體步驟進行了設計,實施方案如下:第一階段:規劃。制定教學目標,確定實驗班級。教材調整,確定講授重點。以教師為主,包括課堂講授的安排,講授重點的確定,以及為學生編寫模擬操作指導大綱等。第二階段:執行。發動學生,明確任務。網絡操作,案例設計。在線指導,提高案例質量。以學生為主,教師指導。使學生意識到自己的“工程師”角色,在虛擬仿真環境中動手操作,完成生產任務。教師可通過前端軟件實時觀察學生的操作行為,回答他們提出的問題并分析模擬結果。學生和老師之間、學生和學生之間在信息窗口通過文本進行交流。不同地點的學生可以組合起來,在同一個模擬模型中分別進行操作。第三階段:分析和討論。根據模擬操作記錄,全班交流研討,教師點評。師生結合,互動交流。教師從學生的操作結果中選取典型案例,讓學生制作講演課件,給全班同學分析自己的成功與失敗經驗,教師在交流中給予適時的點評,并進行成績評定。第四階段:總結。遴選優秀操作記錄,編寫示范案例。對學生的優秀設計案例進行整理歸納,為教師進行課62教學新思維堂多媒體教學時使用,也可作為學生課外預習、復習、自學的電子版的立體化教材。
三、個案舉例
鋼鐵大學網站提供了鋼鐵應用、鋼鐵設計及冶煉等仿真模塊,包括了現代鋼鐵生產的主要工序,可以為材料工程,尤其是金屬材料工程專業大多數專業課程教學所采用。如在金屬學材料學課程教學中,布置了一個生產任務:現收到一客戶訂單,要為一座海洋平臺生產一種易焊接的高強度厚鋼板,鋼種的成份和工藝路線由生產方來確定。訂單要求生產9000t的高強度厚板,鋼板對機械性能的要求為:屈服強度,LYS>375Mpa;抗拉強度,530Mpa<UTS<620Mpa;54J夏比沖擊轉變溫度,ITT<-40℃;屈強比LYS/UTS<0.82。使用網站中關于海洋平臺用中厚板鋼的設計模塊進行仿真?!緦W生自主案例】鋼種成分的設計在工藝路線為50mm鋼板中度控軋、25mm鋼板輕度控軋、90mm鋼板中度控軋的情況下,經過調試發現Cr、Mo、Ni、V可以不參與設計考慮范圍,C、Si、Mn在一定的含量內變化,主要調節Cu、Al、N、Nb元素的含量改變鋼材的力學性能,得到了滿足客戶性能要求的3種不同鋼種。從而使基體強度提高,以及固溶體與運動位錯間的相互作用,阻礙了位錯的運動,從而使鋼種強度提高;2號鋼種N、Nb、Al含量較高,主要強化機理是:N與Te形成間隙固溶體,起到固溶強化;在鋼中加入的Nb,Nb元素能形成碳的化合物、氮的化合物或碳氮化合物,在軋制或軋后冷卻中沉淀析出,起到第二相沉淀作用;同時,N與Al、Nb形成氮化合物或碳氮化合物,能釘扎晶界,阻礙晶粒長大,起到細晶強化。3號鋼種的設計是在2號基礎上調試Al元素的含量,3號鋼種Al含量較低。
內蒙古科技大學坐落在“草原鋼城”包頭,1956年建校,1960年更名為包頭鋼鐵學院,隸屬原冶金工業部,1998年劃歸管理,2003 年更名為內蒙古科技大學。它定位于一所教學研究型普通高等學校,以冶金工程、材料工程、礦業工程等優勢學科為依托,形成以工科為主,建設在冶金、材料、礦業、機電、建筑、能源等領域具有優勢的學科專業體系,培養“上手快、留得住、后勁足”,具有實踐能力、創新意識和創業精神的高級應用型專門人才[1]。
我校材料成型與控制工程系始創于建校伊始的1956年,由軋鋼這個具有相當長歷史的老專業發展和演變而來,專業改造后在名義上這一老專業方向不存在了,但新專業傳承了軋鋼這一老專業的特點與內涵。本專業是我校傳統的優勢學科,1996年獲得材料加工工程碩士學位授予權,2004年獲得材料工程領域工程碩士授予權,目前是材料科學與工程博士學位支撐點建設學科。1998年教育部進行高等院校本科專業目錄調整時,設立了材料成形與控制工程這樣一個新的本科專業,從該專業在我校的演變歷史可以看出其專業范圍重點還是傳統的軋鋼專業,以側重于為鋼鐵工業培養專業技術人才為主要目的,畢業生的去向也主要集中在鋼鐵企業[2]。
一、當前畢業設計(論文)中存在的主要問題
(一)設計(論文)的命題
命題是畢業設計(論文)的起航點,立題不當,可能會使整個畢業設計的創新性和目的性黯然失色[3]。實際畢業設計(論文)中選題不當常有發生,其原因各異。
有些命題過于陳舊,這尤其體現在畢業設計的命題上。按照我校本專業的傳統,畢業設計主要是針對鋼鐵企業軋鋼廠的生產車間進行設計。隨著我國的鋼鐵工業近10年來迅猛發展,發生了天翻地覆的變化,新的裝備和控制手段被大量的應用到現代化的鋼鐵生產線上,產品結構發生的更本的變化,很多傳統的觀點和思維被打破[4]。在這種背景下,部分命題仍然按照10年以前的標準來制定,就顯得有些更不上時代,不僅如此,還會造成學生可能存在抄襲現象,影響了對學生的鍛煉效果。
青年教師不能很好的把握畢業設計(論文)題目難度,這一點在筆者身上顯得尤為突出。筆者在博士畢業后,第一次指導學生做畢業設計(論文),在給部分學生制定畢業論文題目時,沒有考慮到學生本身的知識結構的局限,題目超出了學生所能承受的范圍,在完成畢業論文的過程中遇到了很多問題,影響了畢業論文的順利進行。
(二)學生投入不足
1、就業對學生畢業設計(論文)投入的影響。就業對學生畢業設計投入的影響是本專業近期才出現的問題,是一個新問題。鑒于我校本專業畢業生擁有較強的專業性,在2008年以前我國鋼鐵工業迅速發展期間,本專業大四學生一般在秋季學期就找到了相應的工作。然而近3年來,隨著鋼鐵工業整體的不景氣,我校本專業學生的就業形勢也受到不少影響,很多學生在大四的春季學期即進行畢業設計的學期還沒有能夠確定工作,尤其是女生。由于存在就業的壓力,迫使學生將更多的精力放在聯系工作之上,真正投入到畢業設計中的精力和時間有限,畢業設計時心不在焉,出現懈怠情緒。筆者所帶的學生中就存在這種現象,在整個期間,主要的精力放在聯系工作上,對整個畢業設計進程影響嚴重。
2、考研對畢業設計投入的影響。近些年來,隨著就業壓力的增加,為了緩解這種壓力不少學生選擇考研,一般初試成績約在3月份出來,那些過了初試需要準備復試的學生,在此期間難以全心去做畢業設計,這種狀態一般會持續到5月中旬,在研究生入取基本結束后,這部分學生才可能完全集中精力去準備畢業設計。
此外還有一部分學生是那種本身學習成績較差,在最后一學期不僅有就業壓力而且更重要的是還要疲于應付各種掛科的清考。這一類的學生本身基礎比較差,在理論學習階段就養成了對學習不認真、得過且過的習慣,在就業和清考雙重壓力之下,只能有很少的精力投入到畢業設計中。這類學生在筆者所帶的學生中也存在,也是另筆者最頭疼的學生。
3、學生投入不足,也有部分原因是學生對畢業設計(論文)的重要性認識不夠。部分同學對研究題目認識不足,準備不充分,設計過程往往流于形式,其表現往往是應付了事。這是一種普遍的心態,具有普遍性。
二、相關問題的改進
(一)完善命題
命題是指導教師的最重大的任務,為了保證質量,在命題是筆者認為需要在以下幾個方面把關:首先從專業培養目標出發,設計的內容應與本行業最新的發展趨勢密切相關,這需要指導教師密切關注當下國內外鋼鐵工業的發展趨勢;其次設計(論文)題目難度應適中,尤其是青年教師需要盡量避免這種現象的出現,針對青年教師容易出現這樣的問題,個人認為系主任要對青年教師制定的題目進行審核,對研究和設計的內容進行把關,以確保學生能夠運用所學知識和現有條件在規定的時間內完成畢業設計;最后,還需保證題目的多樣性,不僅要保證學生1人1題,更重要的是要避免題目重復出現。
(二)因材施教
學生經過大學四年的學習,個體存在很大的差異,且新時期的學生每個人所追求的目標亦不相同,自身想法很多,因此在面對畢業設計時,學生心中所想也不盡相同,當然最終的基本目的還是一致的即能夠完成畢業設計,順利畢業。
鑒于不同學生各自擁有不同客觀條件和自身追求,因此作為指導教師在面對學生是不能采用一刀切的方式進行指導,而是需要客觀的面對學生所固有的個體差異,因材施教,以確保每個學生都能完成畢業設計,順利畢業。
為此作為指導教師,首先應該主動了解學生的基本情況。在初見學生的時候,明確學生的就業情況,是否簽約,簽約的意向以及將來擬從事工作的類型;了解學基礎課的學習成績,是否存在補考和最后的清考;學生的考研狀況,報考的學校和專業。
其次在明確學生的相關背景之后,充分考慮到學生的個體化差異,為不同學生量身定做其畢業設計或論文的內容。具體的指導思想是重點培養對本學科有興趣的學生且精力足夠,將來要從事鋼鐵工業生產或者研究領域的學生,按照評優的標準去要求這些學生,激發這類學生的潛力,這類學生以做畢業論文為主,提前培養他們運用所學知識解決問題的能力,讓他們能夠學以致用;對于需要找工作,且將來樂于從事鋼鐵工業的學生要重點幫扶,這類學生以做畢業設計為主,我校本專業的畢業設計以軋鋼車間設計為主,整體套路成熟,但是缺乏創新性。讓這類學生做畢業設計可以讓學生了解軋鋼生產基本流程,設備狀況,了解車間設計的目的和意義,對將來熟悉工作環境打下一個良好的基礎。對于能力有限(主要是那些基礎課程成績很差,還需要參加補考和清考的學生),則需要重點照顧,適當降低對他們的要求,讓需要補考的學生有足夠的時間去準備補考,同時指導教師要花更多的時間去跟蹤指導他們的設計,以避免學生過于放松設計;對于那些完全無意于從事本專業的學生,則不能再專業方面對他們施加過大的壓力,因為學生已經對本專業的學習沒有興趣也就沒有做好畢業設計的動力,對于這樣子的學生,個人認為應該盡量的幫助他們完成最基本的畢業設計內容,確保順利畢業。
(三)嚴格紀律
當然,對待不同的背景的學生采用不同的指導思想,并不是說放松對學生的要求。嚴格紀律仍然是不可或缺的,是畢業設計能夠順利完成是一個重要保障。
指導教師在充分考慮學生個體差異情況下制定研究和設計內容后,在畢業設計的開始就要明確畢業設計的紀律,以嚴格的出勤、過程監控、結果檢查、畢業答辯規章制度以及考核辦法,使學生認識和重視畢業設計,端正畢業設計態度,認真完成畢業設計。
此外,認真做好畢業設計的教育、動員和宣傳工作,使學生充分重視畢業設計在教學中的重要地位,亦是不可缺少的過程。
三、總結
綜上所述,本科畢業設計工作是高等學校人才培養的重要環節,在面對新的環境下出現的系列問題,指導教師一方面需要加強在命題科學性,前瞻性以及合理性方面的探索,另一方面要充分考慮學生自身的背景以及興趣愛好,在指導學生時因材施教,充分發揮每個學生的積極性,并輔之以嚴格的紀律,使學生順利完成畢業設計,提高能力,為將來的工作和進一步深造打下堅實的基礎。
參考文獻:
[1]李保衛.內蒙古科技大學本科教學水平評估自評報告[j].包頭:內蒙古科技大學,2008.
要做到
“五個注重”:
一要注重循序漸進。
小學階段的教育,
在人的一生中起著重要的啟蒙作用。
小學生的思想既存在單純、可塑性強的特點,又存在注意力難以集中、
心理承受能力較差的弱點。所以,對小學生進行思想政治教育要注重內外部因素相結合,
把情感態度和價值觀的要求滲透于日常教學之中,
逐步提高學生的品德修養,
培養他們的良好個性和健全人格。
二要注重班風建設。班級是小學生的主要活動場所,營造一個健康向上的班集體,有利于培養學生積極進取的思想意識。
要注重因人施教,營造溫馨班級,
充分發揮學生各自長處,
為班集體建設作出應有的貢獻。要引導學生自覺投身于思想政治的學習當中,促動孩子們在積累個人學識的同時,積極投身集體活動和社會實踐,培樹自覺主動為大家、為班集體、為社會服務意識。
三要注重言傳身教。“師者,傳道授業解惑也?!苯處熢诮虒W過程中堅持傳播正能量,
做學生的榜樣,
這是師者的天職,更是教師的畢生追求。教師要增強責任意識,
以良好的師德影響學生,要把管理與育人、教書與育人有機結合,溝通師生之間的感情,使學生在愉快的情緒體驗中接受教育,以收到“親其師、信其道”的效果。
四要注重正面教育。
教育好下一代任重而道遠,
需要體現于日常潤物細無聲的教學工作之中。
教師要堅持以正面教育為主,
使小學生堅定愛黨愛國的信念,
樹立強烈的民族自豪感和自信心,
從小培養孩子們開放、創新、競爭意識。
工作中要“偏愛”后進生、嚴愛優等生、博愛中等生,
引導學生一起成長進步。
五要注重實踐活動。
學生優良品德的培養,離不開廣泛的實踐活動。通過適時組織學生開展各種課堂內外系列實踐教育活動,
為學生提供充足的“互動機緣”,讓學生汲取更多的“優良養分”。
諸如開展文明服務、敬老愛幼、助人為樂等活動,可以最大限度地提升學生的興趣愛好,
激發學生的求知欲望,淬煉學生的品格情操,從而促其不斷自我成長,培養出新一代
“四有”新人。
總之,
二、專業導論課的教學模式設計與實施
基于專業導論課的教學內容安排和大一學生的學情,在專業導論課的教學設計中采用了多種形式,包括:課堂講述、主題調研報告、學研小組、專業論壇、專家講座、開放專業實驗等。首先,在大一新生的專業導論課上,學生會非常期待一場系統的、寬博的、具體的專業相關內容介紹,他們急切地想要了解自己所在的專業、要學什么、要做什么及將來的發展前景。因此,系統地講述專業相關內容是專業導論極其重要的第一堂課。在講述中引用實例,加入調查性的提問引起討論,以活躍課堂氣氛并激發學生思考某些問題。另外,專家講座是一個有益的補充。有專長、有成就的本學科領域內的專家一定程度上代表著專業的被認可度,會帶來一種榜樣的力量。更多的專業相關知識和問題,在講述了基本的基礎知識的基礎上,則引導學生自己通過多種途徑去調研,培養學生閱讀、寫作及溝通的能力。就這一環節,始終圍繞一個“導”字,設計了專業論壇、專業主題調研、小組報告、學研小組等形式,引導學生開展自主性的專業相關主題調研、引導學生進行小組合作并培養團隊精神、引導學生面對問題時學會多種途徑去解疑釋惑,促使學生“自己動手,豐衣足食”,培養學生自主學習、思考問題和解決問題的能力以及團隊合作的能力。實踐表明,這些在大一時就積極參與實驗的學生在后來參加大學生科技創新訓練項目和創新實踐比賽中都表現出了優勢。按照課程教學要求,專業導論課中必須開設大學成長規劃和職業生涯規劃的內容。在這一部分中,鼓勵學生設計并展示自己的大學成長規劃和職業生涯規劃并展開討論,引導學生審視自己的人生理想、職業理想,“不積跬步,無以至千里”,進行大學成長規劃和職業生涯規劃并實施之,逐步成長。這一點,從學生的反饋來看,還需要在之后的每一學期進行督導。
《高等教育法》指出高等教育任務之一是“培養具有創新精神和實踐能力的高級專門人才”,“本科教育應當使學生具有從事本專業實際工作和研究工作的初步能力”,而本科畢業論文正是考查學生這種初步能力的重要指標。《論文寫作》是為中文類高年級本科生開設的專業限選課,一般在大學三年級開設,此時的學生在過去兩年的專業學習中打下了一定的專業課基礎,也有了理論的儲備,初步具備從事論文寫作的條件。該課程使用的教材是北京大學出版社出版,溫儒編的《中文學科論文寫作訓練》。該教材是為中文學科本科學術論文寫作訓練而編寫的,編者強調應在教學過程中實現兩個結合,即將寫作訓練與專題課結合,將寫作訓練與本科畢業論文結合,這也決定了本教材的導向,即較少涉及理論而多提供學術性寫作的范文,多往研究方法、規范和一般科研寫作的路上引導。本教材在導言之后分為八個專題,即漢語言文學專業所涉及的八個學科領域,包括:古代文學、現當代文學、文藝學、古代漢語、現代漢語、語言學、比較文學與外國文學,為中文類本科生的學年論文及畢業論文寫作起到了良好的示范和引導作用。
一、教學框架:總論與專題的合理設置
該教材編者原來設想該課程不是由一位教師單獨講授,而是分給各個教研室,由中文各學科老師共同完成,但在我院實際教學中均由一位教師單獨講授。針對這種情況,筆者在教學過程中設計了總論與專題結合的教學框架,加強了總論部分的內容,包括以下方面:本課程簡介、畢業論文的基本要求、如何選題、如何擬定寫作計劃、材料搜集與觀點設定、論文構思與常見問題、修改與定稿、學術規范。詳盡的總論之后才開始分專題例文選讀。
為了激發學生的興趣,將學生的注意力引到該課程的學習與探索中來,在第一堂課時就必須介紹該課程的內容、要求與意義,使學生明白該課程將給予他們什么樣的幫助,盡快確立自己的學習目標。首先告知學生本課程的教學目的與要求,本課程的主要目的是為學生畢業論文寫作打好基礎,不僅考查學生的基礎寫作能力,同時也訓練學生的學術實踐能力。希望通過教學使學生了解什么是學術論文(優秀的論文一般具備以下幾個條件:文獻的要求,對話性,遞進感和規范性);學會選題:如判斷其是否有學術意義。圈定合適的研究范圍;保持客觀、公正的研究立場,不人為拔高自己的研究對象。對學生綜合能力的要求則包括學科知識的掌握、思想上的發現、邏輯思維和理論分析能力、文字表達等等,其中最基本的要求是文字表達,錯別字、病句、空話連篇、矯揉造作、嘩眾取寵的文風都是不提倡的。對學生提出一些具體的建議與要求:如開列核心期刊目錄,使學生有途徑閱讀質量較高的學術文章;要求學生有意識地尋找規范的文本閱讀,閱讀并伴隨思考:這篇文章寫得好不好?好在哪里,對我有何啟發?在研究方法、觀點梳理、語言表達、資料搜集方面有何可學之處?要求學生從本課程開始具備選題意識,多閱讀一些作家作品以及相關的經典研究成果,并隨時記錄閱讀心得,以便尋找到合適的論題;要求學生學會查找相關紙質和電子圖書資源,如紙質圖書的第一手材料、超星數字圖書館、CNKI中國知網、維普中文科技期刊全文數據庫、萬方數據資源系統等;晟后讓學生思考論文寫作的意義。相當多同學僅僅將論文寫作作為畢業的手段,事實上通過論文寫作,學生將學會一種學習的方法,獲得一種思維的能力,死記硬背的知識未必伴隨終身,而智慧和能力則讓人終身受益。
總論部分的重點包括畢業論文的基本要求、如何選題、如何擬定寫作計劃、材料搜集與觀點設定、論文構思與常見問題、修改與定稿、學術規范等。在這部分內容的教學中,筆者模擬學生寫作畢業論文的實際運作流程,就各個環節應當注意的問題加以強調,尤其側重于思路的啟發和規范的引導,使學生學會論文操作的具體模式。
而在分專題例文選讀部分,由于本教材每個專題前均有該學科專家所寫的導論,每篇范文前均有專家簡明扼要的點評,筆者在教學中十分注意將導論、點評與具體例文結合。使學生對范文有了多向度的觀照視角,對不同學科的特點、研究方法、文章得失及文風有了深切的體會。從而在自己寫作畢業論文時能找到有針對性的參照物,做到事半功倍。
二、教學環節:規范、實例與細讀
學生以往的閱讀體驗多偏于感性,對學術論文的體制多有隔膜,故而筆者認為,在論文寫作教學中首要確立的是規范。對學生畢業論文的具體要求主要強調四個方面:首先是創造性,畢業論文本就是對學生創造性、思考力和文字表達能力的一次綜合訓練,盡量要求學生在選題、立論、材料運用方面有自己的獨創;其次是要有一定的學術價值,這分為幾種情況:或者是填補空白,或是在前人基礎上有所推進,或是指出前人論述的謬誤并加以新的闡發;第三則要求理論性,要求運用抽象思維進行提煉總結,避免僅僅是堆垛材料,或是停留在感性賞析的層面;最后是學術規范問題,從道德層面來說,明確要求不可抄襲。從文本層面來看,要求語言規范典雅,條理清晰,論證嚴謹,行文符合文體規范。筆者在教學中發現,學生基于死記硬背型的學習方法,對論文寫作中的一些基礎概念存在教條化的理解,實際操作時則錯誤百出。針對這種情況,筆者重點強化學生經常出現問題的摘要、關鍵詞、注釋等部分的教學,要求學會實際操作而非僅僅熟知概念。在教導學生擬定寫作計劃的過程中,讓學生思考以下幾個方面:1、選題價值與意義;2、前人相關的研究狀況;3、論文準備解決的基本問題;4、研究的主要角度與理論方法;5、材料搜集的主要方面;6、難點與可能的突破點。這事實上也是規范的開題報告所必須解決的內容。在材料搜集與觀點設定方面要求學生查找以下資料:1、前人已有的研究成果;2、與所選論題有關的各種材料,特別是可以支持論點的原始材料:3、有助于建立研究范式和方法的理論資料。此時教師可通過列出書目訓練學生篩選第一手資料及質量較高文本的能力。在檢索文獻資料的方法方面要求學生掌握追溯法、常用法和循環法。此外還需重點強調閱讀筆記的制作。要求學生注明書名、版本、摘抄頁碼,學會重點摘抄與自己論點相關的文字內容,如有個人見解可以加注。以上均為規范的確立。
筆者發現,部分學生對論文寫作課態度不夠積極,先人為主地認為該課程過于理性,枯燥無味,純粹為完成學業的目來上課。為扭轉這種局面,筆者在教學中始終強調學生的自主性并側重實例教學,盡量使偏于理性 的論文寫作課生動起來。如在選題過程教學中。不提倡學生找教師要題目(這樣就剝奪了學生自主思考、摸索的機會,而且由于學養問題,教師能熟練操作的選題未必適合學生),而是要求學生自主思考,查找資料,找到選題后才和教師進行討論,以便進一步篩選和深化。筆者在教學過程中曾讓學生模擬選題并列出開題報告,這調動了學生自主選題的積極性,絕大多數學生認真思考自己的畢業選題,并就可行性及持續發展性和筆者進行熱烈的討論。學生選題往往存在過大或過小的現象。過大者,大而無當,動輒是跨文化研究,過小者,過于停留細節,作為賞析文章合格,作畢業論文則不合適,還有些選題構想很好,但需要相當多的學術儲備,作為普通本科生可能還不具備這種能力,這時就要量力而行,忍痛割愛,這些情況都需要教師要加以引導。筆者講授該課程已有幾輪,平時注意搜集往屆學生的選題構思、開題報告及論文全文以備教學之用。為讓學生更感性理解選題進程,筆者多采用往屆學生的選題案例進行教學。就以往學生的選題偏差、糾正、深入,逐步引導學生理解如何集中并深化選題,找到合適的論述范圍與角度。在選題類型方面注重通過前人研究實例及往屆學生實例使學生理解什么是有學術意義同時又是自己有能力解決的選題。在學生經常出現問題的開題報告格式及表述、摘要、正文行文等方面,筆者大多采用往屆學生存在問題的實例,通過課堂互動環節,讓本屆學生指出問題并修改。這極大地引發了他們的興趣,調動了他們的積極性,并在這種課堂實踐練習中學會正確的表述方式。事實證明這些實例更接近學生水平,有親切感而無隔膜,起到良好的教學效果。
1 教學內容的選材
在教學內容的選材方面,我們綜合考慮了以下幾個因素:
首先,學生必須能夠有所學,開設一門課程才是有意義的。光電材料是功能材料的一種,為了便于學生循序漸進地吸收理解光電材料的專業知識點,教學內容分成三個方面:光功能材料、電功能材料、光電材料及器件。首先,講解光功能材料和電功能材料方面的知識點,在具有這些知識的基礎上,再講解光電材料及器件方面的知識,學生們就比較容易理解。
其次,我們結合現在的就業情況及研究熱點。我們設置的教學內容,既考慮了學生們以后的就業,也考慮到想進一步深造讀研究生的學生們的研究工作。光功能材料方面的教學內容包含了激光材料、發光材料、紅外材料及光纖材料。電功能材料方面的教學內容包含了導電材料、半導體材料、介電材料、鐵電材料及超導材料,其實半導體材料也是一種導電材料,之所以把半導體材料單獨作為一個章節,是因為半導體材料是太陽能電池和LED照明燈的核心材料,這也是為后面的光電材料及器件的講解做鋪墊。光電材料及器件方面的教學內容包含了光電子發射材料、光電導材料、透明導電薄膜材料、光伏材料與太陽能電池及光電顯示材料。
2 教學方法的探索
光電材料的內容更新很快,現在的學生不僅應該掌握傳統基礎的材料知識,更應該掌握最新的知識點,更應該了解光電材料的最新研究進展,而使用多媒體教學能夠及時地更新課件的內容,使得教學內容能夠跟上最新的研究成果[2],也能讓學生及時了解學習最新的材料知識。
多媒體教學還有助于激發學生學習的興趣[3],因為它在視覺上能夠讓學生很直觀的學習知識,比如:太陽能電池的工作原理,我們可以在Powerpoint(PPT)上給出太陽能電池工作原理圖,然后再對照圖給學生詳細講解其原理,學生將更深刻的理解其原理。再比如,在講解光纖的傳輸原理時,可以通過多媒體技術使用動畫,讓學生很直觀地了解光纖的原理。
但是多媒體教學應該和傳統的板書結合起來,因為有些知識僅僅通過多媒體展示,學生可能比較難理解,還需要老師再次將其中的重點和難點板書出來詳細講解,同時也可以加深同學的印象。
同時,我們在整個的教學過程中,采用的是啟發式及提問式的教學方法。通過對學生進行提問,啟發學生自主思考,加深學生對知識點的理解。
3 課程考核方式的選擇
課程考核的成績包含兩個方面,一個是平時成績的考核,一個是期末成績的考核。
平時成績的考核,我們通過上課提問、課后習題、出勤率等方面進行考核。上課提問可以考查學生對上節課內容的掌握程度,還可以考查學生是否認真聽講、是否認真思考問題。課后習題包括兩個方面,一個是對課上內容的考查,幫助學生鞏固課上知識,另一個是對課外知識的拓展,督促學生課后查閱文獻,培養學生的學習能力。
期末成績的考核,我們采用撰寫科技論文的形式進行考核?!豆怆姴牧蠈д摗烽_設在大四上學期,總共24個課時。因為光電材料的內容更新比較快,而教學課時比較有限,通過撰寫科技論文的形式,既可以督促學生去更全面的了解光電材料最新的研究進展,又可以鍛煉學生查閱文獻的能力,培養學生總結文獻的能力,有利于大四學生在下學期更快進入本科畢業論文的工作。
4 需要改進的地方
作為本專業開設的新課,在教學的探索與實踐過程中,肯定存在一些不足,有很多地方需要我們去反省和改進。我們自己對此進行了總結,具體包括以下三個方面:
(1)在多媒體教學過程中,我們不僅只是使用了PPT這個軟件,還應該引入視頻,比如,在講解使用直拉法制備單晶硅時,就可以引入一段視頻,讓學生更直觀地了解使用直拉法是如何制備單晶硅的。
(2)在教學的過程中,我們還應該出示實物,讓學生能夠直接接觸,加深印象??梢猿鍪緦嵨锇ü饫w、發光二極管LED,單晶硅片和多晶硅片(這時,還可以教學生從宏觀上如何分辨單晶硅片和非晶硅片)、ITO玻璃、閃鋅礦及纖鋅礦結構模型等,不但增強生學習光電材料的興趣,而且讓他們對光電材料實體有直接的感性認識[4]。
1、教學內容傳統課本基本上以微觀語言學為主,按結構語言學思路編排內容,從語音學、音系學、形式學、句法、語義學,一直到語用學和語篇分析。教學內容的改革是大多數學者的主張,如白郁(2007)認為應以語言哲學意義、語言與大腦及認知關系、語言學發展簡史、宏觀把握語言學真正意義等四方面為重。還有學者認為增加課外閱讀材料以改進教學內容,如王揚(2004)和吳格奇(2005)主張選用有助于學生理解基本理論、概念的材料、輔之以拓寬視野的補充材料。還有以宏觀還是微觀語言學內容作為教學重點的爭論:“微觀”派認為語言內部分支是語言學的基礎內容,課時分配比重要大;“宏觀”派認為基礎部分簡單,學生可自學,重點應是宏觀介紹;“中間”派是既注重基礎又考慮涉獵面。但筆者認為,各高校層次不一,地理位置不同,統一規定教學內容不足取。近5年教學實踐告知以微觀語言學為主,即語言學內部分支的理論、研究、及應用。如在處理詞形學時,適當介紹詞的研究現狀,對象我校這種以師范專業為主的二本院校的英專學生而言,無論是提高職業技能還是英語水平都相當重要。我校地處西部少數民族地區,適當添加西部少數民族語言的相關研究,如方言特點、語言遷移現象、少數民族文化研究。也應在緒論部分增加語言學史和語言哲學等內容,讓學生了解語言學理論和研究的發展趨勢及語言與哲學的密切關系。此外適當介紹結構、認知和功能語言學這三大學派的相關內容也有必要??傊?,就像百貨商場的陳列員,教師將所有商品分門別類、有條有理地展示,學生自然會依據具體情況取舍。教師侍機提供論文命題,使學生的探索與發現隨著課堂內容的進行而深化。著名學者趙鑫珊(2004)在其新作《我是北大留級生》就曾列出了20個作為語言哲學研究對象的話題,且認為是“震撼靈魂”,不可能不為之心動的命題。
2、教學方法該課程多采用以教師為中心的填鴨式教學。有關研究一致認為必須改進該教學模式。運用多種教學方法激發學習興趣,最大限度地讓學生參與教學全過程,變被動為主動,從而建構語言及語言學知識。如潘之欣(2002)用大量生動典型例子,結合歸納法和演繹法講解理論要點和難點;王揚(2004)主張采用傳授型和討論型相結合的方法;鞠玉梅(2007)主張研究型教學模式,“設境”以激發學生興趣和強烈求知欲??傊苊饨虒W方法的單一,努力激發學習動力。啟發式和發現式方法講解基礎知識和理論要難點;研究型或探究型方法,布置任務(個人任務和小組任務);大課堂講解研究方法和研究手段與步驟;小課堂任務分配型方法,使教學達到“魚”、“漁”兼授效果。如語言學緒論之后,成立 “Study & Research Group”,提供6個topics:1)Language Changes;2) Social Dialects;3)Communication Competence;4)First Language Acquisition;5)Error Analysis;6) Pragmatic Failure.2周時間準備15分鐘ppt陳述,5分鐘小組同學共同回答相關問題,并建立QQ群,隨時聯系。教師僅為任務的布置者、監督者、幫助者和評定者,并鼓勵學生撰寫論文,或推薦給學術期刊,或為畢業論文的一部分。如一組學生在講“語用失誤”時,列舉了電影、小說、校園、網絡等許多有趣的例子,如分析不夠透徹,教師可適時適當加以補充、提示和參加討論,既融洽了氣氛和師生關系,又學到了知識掌握了方法。讓學生隨時記錄和關注身邊的語言現象和語言事情,并聯系到語言學理論,如,“山寨”、“客”、“剩女”、“宅男”等新詞新語收集,以討論詞的構詞理據。雖在探索中有難度,可介紹期刊網、萬方數據庫等資源;也可大膽與相關領域的教授或專家電郵尋找答案。為形成質量較高的論文打下了基礎。這些都說明:語言學課程的終極目的不是講授具體的理論知識,而是讓學生能意識到語言現象的存在,能對之產生興趣,并發表自己一定的見解,使自己作為一名普通人,也能融入到語言研究的大環境中去。
參考文獻:
[1]白郁.英語本科語言學教學的重新定位[J].國際關系學院學報.2007.
[2]潘之欣.關于高校英語專業“語言學導論”類課程設置的調查 [J].外語界.2002.
[3]鞠玉梅.以多媒體網絡技術為基礎的語言學導論課程研究性教學模式的構建[J].外語電化教學.2007.
[4]王宗炎.語言學.它的歷史.現狀和研究領域 [J].外語教學與研究.1988.