時間:2022-12-24 12:45:37
序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇通信系統論文范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!
比如在應急指揮系統就存在著應用需求。應急指揮系統的主要任務是完成應急現場指揮功能,現有的應急現場指揮系統體制基于K口通信方式,存在一個中心控制盒和若干個信息終端,中心控制盒和每路信息終端之間通過K口有線連接?;贙口的應急指揮系統必須具備一個中心控制盒,如果中心控制盒出現故障則整個系統無法完成正常通信功能。在系統網絡中,中心控制盒必須與每路信息終端拉線完成互通,信息終端相互之間拉線完成與友鄰之間的通信。這樣一來,如果系統存在n個信息終端,則全系統拉線數將達到2n-1路。由此可見,基于K口的應急指揮系統存在可靠性低、布線繁瑣、控制方式復雜等缺陷。如果采用同線通信技術,則應急指揮系統組網方式將大大簡化,在一對被復線上可以同時掛接多個通信終端設備,設備之間共享物理鏈路和帶寬,相互之間完全獨立不受影響?;谕€口的應急指揮系統終端設備之間通過一對被復線并線即可完成全部的連接,任意終端之間能夠相互訪問,能夠完成話音數據的通播、選呼等功能。如果其中一路終端出現故障,并不會影響其他終端的通信功能。在系統網絡中,所有信息終端共享公共的物理線路和帶寬,只須一對線即可完成系統的通信組網功能。
采用同線技術的應急指揮系統具有可靠性高、布線簡單、控制方式方便等優點。同線通信系統體系結構主要遵循電力線載波通信的基本體系結構,在一對被復線上或二線電力線上同時掛接多個終端節點,每個節點都是半雙工通信的方式。
為了協調全系統節點間通信不沖突,設置其中一個節點為主節點,其余節點均設置為從節點,主節點定時發送令牌給其余節點,令牌中帶有節點編號。如果從節點接收到的令牌編號與本節點編號相同,則發送本節點語音和數據包,定時時間到以后,主節點更改令牌節點編號,允許下一節點發送數據,循環往復,直到所有節點都涵蓋。受系統帶寬限制,通信節點最多10個。同線通信系統硬件平成整體功能框架的搭建,圖四是同線通信系統硬件原理框圖。,ARM7處理器LPC2388處于系統的核心,通過它完成各個芯片的初始化,接收并轉發語音編碼壓縮數據、RS232異步串口數據、線路載波通信數據等。
在排故過程中應該還注意這樣一些問題,在安裝高頻收發機和高頻耦合器時應該特別注意收發機和耦合器之間兩根同軸電纜的鏈接線,這兩跟線很容易接反而造成高頻通信系統不工作。高頻收發機和高頻耦合器安裝在后設備艙內,具置如圖2。
這種部件的布局可以說是CRJ-200飛機設計上的缺陷,因為在這個區域范圍內鄰近APU,一號、二號液壓系統,滑油散熱系統,空調系統的ACM,這些系統都會出現滑油和液壓油的滲漏,長時間必然對該區域的安裝部件存在油污染的情況,高頻收發機和高頻耦合器之間有同軸電纜的連接,還有波導管等部件,長時間機器表面被大量的油污所覆蓋,這將會影響到機器的散熱,降低了機器本身的使用壽命。同軸電纜的接頭處也覆蓋了大量的油污,長時間慢慢滲透進入接頭內,在實踐工作中也碰到拆裝高頻收發機和高頻耦合器時,發現同軸電纜接頭內有少量的油污,這將導致高頻收發機和高頻耦合器信號傳輸出現衰減。這要求在安裝機器時對接頭的連接要特別注意。
對于CRJ-200飛機的高頻故障還可以根據FIM23-12-00來進行排故,但是要根據FIM來進行排故的話,在MDC(維護診斷計算機)的當前狀態頁必須出現和高頻相關的故障信息才能依據FIM進行排故,這也是CRJ-200飛機在FIM設計上存在的缺陷。在實際工作中大量的有關高頻的故障出現時,MDC的當前狀態頁是沒有任何信息出現的,那么我們是不是就束手無策,失去排故得方向了?如果有相關的信息,利用FIM是可以很方便地解決問題的,但是在沒有相關的信息指引時,就只能應用上面筆者所總結的一些思路和經驗來進行排故,也就是說在故障現象很模糊的情況下,運用高頻收發機和高頻耦合器的工作原理和自身特點來進行排故是一個很好的方法,能快速確認故障點及時排除故障。
2基于循環前綴的短時頻偏估計
由上述分析可知,頻偏的存在和信道的影響會使得接收序列Y(k)不等于發送序列X(k),同時會產生子載波間的干擾。因此必須在FFT處理前進行頻偏和信道的估計與補償。本文利用循環前綴進行短時頻偏估計,即在一個FFT數據幀內進行估計。該方法比利用導頻的頻偏估計具有更好的實時性,更適合于高速和超高速移動場景。在頻偏估計中還需考慮多徑傳輸問題。多徑信道的時延會導致上一個數據符號“污染”下一個數據符號的循環前綴。假定等效基帶信號的最大多徑時延為L,即循環前綴的前L個數據中有多徑干擾。為了降低頻偏估計誤差,實際計算時(11)式修正為。
3仿真結果與分析
為了驗證本文頻偏信道聯合估計的算法性能,采用Matlab軟件構建超高速移動OFDM系統通信平臺,結合典型城市信道的實際傳輸條件設計了如下仿真無線信道仿真參數:高速OFDM系統共有256個子載波,系統采用16QAM調制,采用塊狀導頻結構,循環前綴CP=64。信道多徑數為5,各徑時延在0~12μs均勻分布,各徑功率(τi)按e-τi/τmax衰減,其中τi為第i路徑時延。本文中均方根時延τrms取為4μs。
3.1頻偏估計誤差影響實驗為了驗證多普勒頻偏估計誤差對于傳統信道估計算法的性能影響,設計驗證實驗,設置系統信噪比SNR-dB=20dB,系統頻偏為800Hz,多普勒頻偏估計誤差從0Hz每次增加20Hz一直到200Hz,觀察各個多普勒頻偏對信道估計性能的影響。實驗結果如圖3所示。圖3所示使用傳統的LS算法和LMMSE算法進行信道估計,在多普勒頻偏誤差為0Hz時,信道估計誤碼率較小,估計性能好。隨著多普勒頻偏估計誤差增加,信道估計性能急劇惡化,在多普勒頻偏為200Hz時,2種信道估計算法誤碼率都在0.07左右,此時信道估計的誤碼率已經不能滿足信道估計的誤碼率要求。通過實驗可以驗證多普勒頻偏對信道估計性能影響較大,在多普勒頻偏較大時,傳統的信道估計的誤碼率較大,估計性能不能滿足實際傳輸需求。通過該實驗可知較小的多普勒頻偏估計誤差對OFDM系統產生較大的性能惡化,本文設計的實時頻偏可以實際估計頻偏變化,大大提高頻偏估計的實時性和準確性。
3.2頻偏估計算法性能驗證為了驗證基于循環前綴的頻偏估計性能,進行了Moose算法、SC算法和本文的頻偏估計的對比實驗,設置系統的歸一化頻偏為0.1時3種算法的頻偏估計均方誤差(LMMSE)的對比實驗,實驗結果如圖4所示。由圖4可知,Moose算法的頻偏估計性能最好,本文算法和性能較好的SC算法性能差異不明顯。本文算法是盲估計算法,利用循環前綴的冗余信息,相比于SC算法、Moose算法,不需要訓練序列,降低了系統的數據利用率,且能夠和傳統信道估計的算法相結合,不需要改變信道估計的導頻序列,綜上本文的算法性能較好。但本文算法是基于循環前綴的,故對循環前綴的數量有要求,本文循環前綴長度是數據符號長度的1/4。上述實驗過程驗證了多普勒頻偏對于信道估計的影響,通過分析實驗結果,本文設計的頻偏估計算法具有較好的估計性能。
2數據交換
數據交換出現于上世紀九十年代,它是一種標準數據傳輸方式,已經在國內外的眾多行業中得到了應用,并取得了較好的應用效果,因為數據交換的自動化處理能力較大,盡管涉及了較大的用戶范圍,但是依然能夠較好的保障數據處理的正確性,所以,數據交換在醫療領域的應用前景也是比較大的。本文接下來以面向區域醫療的臨床數據交換系統設計為例,研究其實際應用。一方案整體架構醫療機構內部系統較低的集成水平,導致醫療機構與區域醫療中心的信息交換的可靠性與實時性特點表現的不夠明顯,為了能夠更好的實現二者之間的數據交換和共享,所以設計了面向區域醫療的臨床數據交換系統,整體架構如圖1所示:從圖1中我們可以看出,在這一臨床數據交換系統中,主要包含兩部分,一是區域醫療邊界網關,二是數據交換標準化接口。其中,區域醫療邊界網關是通過集成平臺提供的SQL、File、FTP等接口,將EMR、LIS、PACS、藥庫系統等進行信息集成,從而形成一套有效的醫療信息元數據,以實現區域醫療的各項需求,在文件服務器中存儲整個過程中出現的圖像、文件等,為本系統實現數據交換提供數據基礎;數據交換標準化接口主要是利用集成平臺與MML標準,實現上述醫療信息元數據的標準化,通過運用區域醫療中心的集成平臺,對標準文件進行解析,并在區域醫療區域數據庫中進行存儲,最終實現數據的交換和共享。二數據獲取方式設計數據獲取的基礎是系統中的集成平臺的設計,通過它來獲取各種醫囑、文書等關鍵信息,并在特定的數據庫中進行保存,通過集成采集掛號、EMR、PACS、等異構系統中的離散數據,并在數據庫表中進行存儲。通過面向區域醫療的臨床數據交換系統的設計及以上分析,充分證明了數據交換技術在醫療領域的應用。
3電子郵件
隨著通信技術的不斷創新與進步,以及計算機技術的廣泛應用,在人們目前的工作、生活中計算機已經成為一種不可或缺的交流工具,電子郵件(E-mail)已經基本上取代了傳統的書信。通過E-mail進行信息交流僅能夠將傳送者的文字信息快速傳遞,還能夠傳輸生動的圖片、音樂、視頻等數據信息,而且,E-mail還可以通過群發功能將同一信息快速傳遞給多個人,大大提升了信息傳遞效率,也節約了傳遞者的時間,提高了他們的工作效率。電子郵件的這些優點都決定了其在醫學領域的廣泛應用,它操作簡單方便、傳輸信息準確可靠,并具備郵件接受自動提醒功能,醫生以及醫院之間通常會使用E-mail作為其主要通信方式,甚至在一些醫院信息管理以及辦法自動化系統中,內部信息交流的基本通信方式就是使用E-mail。
4遠程醫療
遠程治療是指利用現代網絡和電子計算機等多媒體來實現遠程臨床診治。從其定義來看,遠程醫療實現的最基本條件就是網絡,醫生通過網絡了解病人的基本信息及病情,并通過計算機技術,進行遠程指導與治療,從而大大節約了診治所需的時間。比如,遠程手術就是專家及醫生通過運用計算機網絡技術觀察和了解病人圖像和聲音,再利用現代醫療器械對病人實施遠程遙控手術,從而在危急時刻,在最短的時間內挽救病人生命;再比如遠程聯合會診,各個專家不必在同一地點出現,而可以直接通過計算機遠程技術,讓身處不同地方的專家同時清楚地觀察到病人的病情,并能夠實現專家間的相互溝通。
2項目建設目標
(1)建立信息通信系統狀態檢修體系,基于現有信息通信設備狀態檢修工作開展的前提下實現軟件、軟件與硬件構成的系統的狀態檢修體系的建立。(2)建立IMS、一體化安全運維系統的數據接口,實現軟件的監測數據接入。(3)構建軟件、系統的評價指標體系,結合軟件和系統特點實現評價指標抽取、評價指標分類及評價方法的制定。(4)建立系統評價模型,從業務系統評價、支撐系統評價和綜合系統評價三個層面形成系統層面的評價體系。(5)形成系統風險評估機制,根據狀態評價結果及風險評估參數對設備和系統兩個層面進行風險評估,并計算出相應的資產損失、系統性能下降風險和數據丟失等安全風險。(6)基于設備和軟件的在線監測預警數據,結合項目對系統各組成設備和軟件的關聯關系,智能分析系統故障原因,軟硬結合實現系統故障診斷并給出輔助處理建議。
3項目研究路線
一是進行項目范圍定義及相關關鍵概念的歸納總結,形成系統的典型構成、信息通信系統概念、信息通信系統狀態檢修工作等內容界定。二是全面調研現有信息通信設備、軟件和系統現狀,實現對其關聯關系、組成結構的分析,建立相應模型分類。三是研究探索軟件及系統評價模型和方法,建立相應指標體系、評價流程以及設備/軟件和系統的評價影響模型。四是研究軟件與系統風險評估模型。五是研究軟件及系統的故障診斷方法,結合設備和軟件的監測數據和故障情況,為系統故障和異常的預警分析提供細化處置建議。六是嚴格項目管理,制定可行的項目管控措施。
2工作原理
欲監測和保護藏羚羊,就要建立一個完善的控制管理系統。首先藏羚羊自身的體溫和心跳的信息轉化成虛擬信息傳遞到無線傳感器,經過A/D轉換把虛擬信息轉化為數字信息,運用GPRS技術傳遞到一些基站,這些基站通過信息的整合后,傳遞給監控中心,該系統根據藏羚羊的心跳和體溫來判斷其位置和是否安全。傳感器設置最高的體溫和最低的體溫,最大的心跳頻率和最小的心跳頻率;CC2431完成信息的轉換,GPRS無線通信完成數據的遠距離傳輸,監控中心對數據信息進行收集和分析,給出一些判斷。
熱釋電紅外傳感器和反射式光電傳感器有四種測量信號報警上限信號Ps,報警下限信號Px,正常上限信號Pu,正常下限信號Pd。這四個測量信號把藏羚羊的安全分為三個區域。安全區:Pd<P<PsorPx<P<Pd;警戒區:P>Ps;危險區:P<Px;(1)若藏羚羊的心跳和體溫大于正常下限小于報警上限或者大于報警下限小于正常下限,說明藏羚羊在正常的活動,它們是安全的;(2)若藏羚羊的心跳和體溫大于它的報警上限,這說明藏羚羊有兩種可能,一種是藏羚羊大規模的遷徙;另一種是受到盜獵人的追趕,在拼命地逃生。(3)若藏羚羊的心跳和體溫小于報警下限,這說明藏羚羊有危險,盜獵人獵殺了藏羚羊死以后溫度下降,這時需要最近的藏羚羊保護人員采取相應的措施保護它。通過傳感器傳遞的數據信息,實現藏羚羊保護的及時性和有效性,同時減少了資金的投入、能源的消耗。因為藏羚羊是恒溫動物,它會根據外部的溫度調節自身的體溫一直維持在相對穩定地范圍內,這樣不管是白天還是夜晚都能夠無偏差的監測藏羚羊的安全情況。還能夠通過藏羚羊的活動路線和范圍,使得人們對于藏羚羊的遷徙和生活范圍有更精確地了解和認識,也有利于在遷徙的過程中和生活的范圍內,實施一些人為的保護措施。
在疆內超長距離光傳輸系統中最常用的配置就是光信號入SDH設備配合后向拉曼、預放PA、解碼器OEO,在出SDH光板之前配置前向拉曼、功放BA和編碼器OEO。從煙墩750kV站至沙洲750kV站光傳輸系統典型配置中可以看出從SDH設備至線路中間經過了多個跳接點,跳接點越多故障概率就會越高,所以除了兩站點間的線路光纜和跳纖,光放設備運行穩定性也決定兩站點間光路穩定性。在長距離傳輸中功放和預放直接搭配使用較多,比如傳輸距離為220公里的鳳凰750kV站至達坂城750kV站便是采用功放和預放直接搭配。在2013年多次出現因為中間某個設備(編、解碼OEO,BA、PA,前向、后向拉曼)故障而出現光路異常。傳輸距離為270公里的吐魯番變至金沙中繼站出現兩次因為編解碼OEO故障而引起的光路異常,搶修中通過更換故障設備消除該異常。所以光放設備的穩定性關系著整個通信網的穩定運行,對采購的光放設備必須要求可靠性高。
2遙泵技術
遙泵技術其實就是摻鉺光纖放大技術,摻鉺光纖被熔接在傳輸光纜的適當位置,通過在某站端發送較大功率的泵浦光,在光纖傳輸后經過合波器進入摻鉺光纖,并激勵摻鉺光纖中的鉺離子,最終在線路中將光功率放大[2]。遙泵為無緣設備可以放在光纜任何位置,在該技術中,大功率的泵浦源必不可少,泵浦源的穩定性決定了整個傳輸系統的穩定性。泵浦放大器對光纜的性能要求較高,在大于250公里的傳輸鏈路中就可以考慮使用遙泵技術。2014年初在疆內吐巴線路中興OTN設備光路搭建中就使用了遙泵,為了降低損耗,入站光纜在光配內不經過法蘭跳接,而直接將纜芯和尾纖熔接,以減少跳接點的損耗和大功率的光對尾纖接頭損害,以減少故障的發生。前后遙泵放大配置方案如圖1所示。
3超低損耗
光纜可以在超長距傳輸中可以明顯延長光傳輸的距離,能夠進一步減少中繼站的設立,從而減少和優化光路子系統(拉曼放大器等)的配置,進而減少故障點。
足球機器人是一個極富挑戰性的高技術密集密集型項目,融小車機械、機器人學、機電一體化、單片機、數據融合、精密儀器、實時數字信號處理、圖像處理與圖像識別、知識工程與專家系統、決策、軌跡規劃、自組織與自學習理論、多智能體協調以及無線通信等理論和技術于一體,既是一個典型的智能機器人系統,又為研究發展多智能體系統、多機器人之間的合作與對抗提供了生動的研究模型。它通過提供一個標準任務,使研究人員利用各種技術獲得更好的解決方案,從而有效促進各個領域的發展。其聽理論與技術可應用于工業生產、自動化流水線、救援、教育等實踐領域,從而有效推動國家科技經濟等方面的發展。機器人足球從一個側面反映了一個國家信息與自動化領域的基礎研究和高技術發展水平。
目前,國際上有機器人足球比賽分為兩大系列——FIRA和Robocup。本文所要論述的系統所應用的F-180小型足球機器人比賽就是RoboCup系列中應用較廣泛的一種。
F-180小型足球機器人足球比賽的示意圖如圖1所示,比賽雙方各有5名機器人小車在場上。足球機器人系統在硬件設備方面包括機器人小車、攝像裝置、計算機主機和無線發射裝置;從功能上分,它包括機器人小車、視覺、決策和無線通信四個子系統。
其中無線通信系統是銜接主機和底層機器人不可缺少的一環,它必須保證從主機端到機器人底層之間的數據傳送是可靠的,從而使得機器人比較能夠順利流暢進行。由于比賽雙方都有多個機器人同時在場地上跑動,要求無線通信有一定的抗干擾性。無線通信系統的性能相當程度上直接影響著機器人的場上表現。
1系統的設計及實現
比賽中從攝像頭來的視頻信號經過計算機處理之后得到控制小車用的數據信息,而無線通信系統的就是將這些數據信息及時準確地送達場上的每一個機器人小車,系統采用廣播方式,各機器人根據特定標志識別發給自己的有用數據,從而進行決策與行動。整個系統的框圖如圖2所示。
1.1發送端的硬件設計
發送端主要用PIC16F877單片機實現編碼和對發射機的控制,計算機通過串行口發送數據,經過PIC16F877編碼后再通過PTR3000無線通信模塊將數據發送出去。
所采用的PIC16F877單處機是MICROCHIP公司推出的8位單片機。采用RISC指令系統和哈佛總線結構,最高運行的時鐘頻率可達20MHz,因而指令運行速度快。它有很寬的工作電壓范圍,可直接與3.3V的PTR3000無線通信模塊配合使用。
TR3000無線數據收發模塊是一種半雙工收發器,采用NORDIC公司的nrf903無線收發芯片,工作頻率采用國際通用的數傳頻段ISM,頻段915MHz,工作頻率可以在902MHz~928MHz可變。采用GMSK調制,抗干擾能力強,特別適合工業控制。靈敏度高,達到-100dBm,最大發射功率+10dBm,工作電壓為2.7V~3.3V。它最多有169個頻道,可滿足需要多頻道的場合,最高數據速率可達76.8kbps。因而完全可以滿足小型組機器人通信的數傳速率與距離的需要。
本系統中PIC16F877就是采用20MHz的時鐘信號,能夠滿足即時收發數據以及編碼的需要。整個系統中包含兩種電源,無線通信模塊的電源為3.3V,而MAX232又需要+5電源。信號線的連接也要考慮兩種電平的匹配問題,在必要的地方要加上電平轉換電路。
首先單片機要接收來自計算機端的數據,計算機串口輸出的信號經過MAX232由232電平轉換為TTL電平。但是由于單片機采用3.3V電平,因而MAX232輸出的信號需經過電平轉換才能輸入單片機,電平轉換可以采用TI公司提供的典型電平匹配電路(見圖3),也可采用74LVCXX系列邏輯門來轉換。
由于PIC16F877只有一個異步串行口,因而要通過16C550通用同步異步收發器(USART)芯片來擴展一個異步串行口。這樣就可以保證從計算機串口輸出的數據與無線通信的數據速率不同,從而使原始數據經過通信編碼及打包數據量增加之后也能及時傳送,并且在必要時也能將接收數據送回計算機端,實現半雙工通道。系統的電路圖如圖4。從圖4可以看出PIC單片機采用并口對16C550進行初始化配置。由于16C550共有10個寄存器,且占用了8個地址,因而PIC單片機用RA0、RA1、RA2三個通用I/O口做地址線選擇16C550的各個寄存器。單片機可以不斷通過RB1、RB2引腳檢測TXRDY、RXRDY信號獲知ST16C550是否接收到數據,還是已經發送了數據。還可以通過把16C550設置成中斷方式使每接收到一個字節數據便產生一次中斷使INT信號有效,單片機進入中斷處理程序,從而使單片機的執行效率更高。
單片機通過自帶的異步串行口輸出數據到PTR3000通信模塊。由于nrf903芯片接收和發送數據共用一個引腳,因而需要其他電路來解復用。最簡單的方法就是在單片機的TX引腳先接一個10kΩ的隔離電阻,再與RX和PTR3000的DATA引腳相連。但是這種方法有兩個缺點,它會造成發送的數據串入到單片機的接收引腳中,另外發送信號的驅動能力受到了極大的限制。因此,本系統采用了74HC244三態緩沖器作為隔離(見圖4中虛線框內所示),并且通過單片機的RB4控制收發狀態,因而在半雙工方式下發送信號與接收信號可以互不干擾地傳送。
對于通信模塊工作狀態的控制主要包含表1所列的這幾個信號,通過單片機的普通I/O口即可控制。
表1PTR3000工作工作模式配置表
PTR3000工作模式STBYPWR-DWNTXENCS
正常工作:接收0000
正常工作:發射0010
掉電模式01XX
待機模式10XX
1.2發送端的軟件設計
當系統復位時,單片機首先要對PTR3000無線通信模塊和16C550的寄存器進行編程初始化。PTR3000的初始化編程是通過同步串行信號進行的,總共有三個信號CFG_CLK、CS和CFG_DATA,分別連接到單片機RC3、RB7、RC5引腳。PIC16F877單片機本身就有同步串行口功能模塊,但是由于PTR3000的同步串行數據位為14位,并非整數字節,而且14位數據必須一次初始化完成,因此實際通過普通的I/O口編程來實現這14位的同步串行信號更方便一些。在整個初始化期間CS信號必須一直為高電平。這14位初始化字的定義見表2。在初始化同步串行信號輸出時最高有效位在先。在對PTR3000編程前先其狀態為接收狀態以免在其他頻率造成無線干擾,編程完成后就可以將狀態改為發射狀態了。
表2PTR3000初始化控制字各位定義
Bit參數名稱符號參數
位數
0~1頻段FB必須為了10(表示為選擇頻段915±13MHz)2
2~9頻點CHf=902.1696+CH·0.1536(MHz)
10~11輸出功率POUT發射功率≈-8dBm+6dBm·POUT2
12~13時鐘分頻輸出Fup"00"=>Fup=fxtal
"01"=>Fup=fxtal/2
"10"=>Fup=fxtal/4
"11"=>Fup=fxtal/82
接下來對16C550的初始化設置。由于PIC16F877自身的并行口對16C550進行初始化編程設置各個寄存器,需要注意的只是在輸出每一個字節之前先要通過RA0~RA2輸出相應字節的地址信號。在初始化設置時將16C550的波特率設置低于76.8kbps,以保證接收的數據能夠通過PTR3000即時發送。
1.3接收端的硬件設計
接收端裝在每個機器人小車上,由于機器人小車的控制采用DSP控制器TMS320LF2407,因而在接收端PTR3000無線通信模塊就采用TMS320LF2407來控制。通過PTR3000接收的數據直接輸入DSP,由DSP進行解碼,從而做出決策和發出控制信號。因而無線通信系統的接收端電路相對發送端要簡單得多,只需用TMS320LF2407代替發送電路中的單片機與PTR3000模塊相連接即可。PTR3000的初始化編程也就由2407的普通I/O口來實現,只不過在初始化編程之后依舊保持PTR3000處在接收狀態。
2協議的設計
2.1物理層的編碼設計
物理層的編碼設計要根據所采用的物理器件和物理信道的特性來決定。本系統采用PTR3000無線通信模塊在接收模塊中為了獲得0直流電平就需要在所傳輸的數據中邏輯“0”和邏輯“1”的數量相等。只有滿足上述條件接收部分才會獲得很高的接收正確率。長時間空閑也會導致接收部分的0直流電平漂移,因為長時間的空閑實際上一直發送的是邏輯“1”。
由于PTR3000的這些特性,很自然就想到采用曼徹斯特編碼(Manchester)(也稱為數字雙向碼(DigitalBiphase)或分相碼(Biphase,Split-phase)。它采用一個周期的方波表示“1”,而且它的反向波形表示“0”。由于方波的正負周期各占一半,因而信號中不存在直流分量。在異步串行通信中有一個起始位“0”,因此將停止位“1”長度也設為一位,這樣在一個字節共10位信號中也就不存在直流分量了。只是加了曼徹斯特編碼之后原來一個字節的數據現在要兩個字節才能傳送。
圖4
有一些數字節,不會在進行曼徹斯特編碼之后的數據串口出現,但是在一個字節中也具有0直流分量的特性,也有很高的接收正確率。這類數據字節如:0xF0、0x0F、0xCC、0x33等。從碼型看來其中0xF0碼型定時性能是最好的(其碼型見圖5),它很容易使異步接收器達到同步并且不會發生錯誤。由于0xF0的這種特性就可以用它做同步碼元,在空閑的時間內通信系統就通過一直發送同步碼元,使接收端保持同步,而且也可以保持接收模塊的0直流電平狀態。
2.2糾錯編碼設計
為了在有一定外界干擾的情況下,保證主要與機器人之間的無線通信依然穩定可靠,必須采取一定的抗干擾措施,這可以采用糾錯編碼來實現??梢赃x擇糾錯編碼方案有(14,8)分組碼、(7,4)分組碼和循環碼,需要使用兩字節的長度發送一字節的有效信息;(5,2)分組碼和循環碼,交錯碼、(21,8)分組碼和縮短循環碼、(21,9)BCH碼、(21,12)BCH碼,需要使用三字節的長度發送一字節的有效信息。
系統中使用了(7,4)分組碼,并在實際中取得了較好的效果。它的構成方式如下:
假定不做任何處理的原碼格式為:
其高四位的監督碼為:
A2A1A0
其低四位的監督碼為:
B2B1B0
則編碼后成為兩個byte長度:
1X7X6X5X4A2A1A0
0X3X2X1X0B2B1B0
其中每個字節的最高位作為標志位,用于表示高四位和低四位,高四位用“1”做標志,低四位用“0”做標志。接收端通過檢測標志進行重組和解碼。對于譯碼基本方法有維特比譯碼和使用監督矩陣譯碼,可根據具體的編碼方案靈活選用。
2.3幀格式設計
一般數據幀包括幀頭、機器人標識、數據、數據校驗、保留字節等內容,通常按照下面的格式排列:
幀頭機器人標識數據保留字數據校驗
2移動通信網絡優化發展趨勢
數據分析與處理智能化、自動化以及一體化,是移動通信網絡優化的主要發展趨勢,具體而言,主要體現在以下幾個方面:
2.1開發數據一體化分析與處理系統在優化移動通信網絡的過程中,可以使用多種技術和工具。但不同類別工具所具備的功能有所差別,倘若技術人員不能對這些工具進行有效的整合使用,就無法充分發揮移動網絡優化方案的實施效果。對此,系統供應商應該與運營商之間形成穩定的戰略合作關系,將系統和環境相關數據緊密結合,開發出數據一體化分析與處理軟件系統,促使海量數據的處理工作更加簡便、高效、快捷,從而減少網絡維護人員的工作量、降低工作難度,使得維修管理人員可以將更多的精力投入于系統與環境的深層次優化工作中,促使移動通信網絡優化目標的實現。
2.2開發職能輔助數據挖掘系統在移動網絡通信優化整個工作過程,數據分析優化屬于最難的環節。由于移動通信網絡在運行過程涉及到的數據量非常大,因而需要借助多種技術進行數據處理。在此過程中,難度最大的在于挖掘這些數據信息之間存在的關聯性,并通過分析、篩選,提取出數據庫中的有用信息。對此,在未來的移動通信網絡優化工作過程中,應該注重開發智能輔助數據挖掘系統,幫助網絡優化人員快速掌握數據之間的聯系,為優化整體改造方案,提供有效的輔助決策功能。
2.3開發自動調整網絡參數系統移動網絡系統在具備輔助決策功能之后,有效地增強了數據分析與處理結果的精確度,但這并不是網絡優化工作的終點,其進一步優化的空間仍然很大。在此階段,相關人員可以開發自動調整網絡參數系統,優化OMC系統配置功能,使其能夠自動調整各項參數系統。如此有助于增強移動網絡適應環境參數變化的能力,從而為用戶提供高質量的通信網絡服務。
公司通信系統的軟件變更主要涉及應用軟件的變更,大部分是對現有功能、數據的調整,如電話號碼的變更、使用權限的變更、使用功能的變更等。對于此部分的變更管理,目前公司管理程序僅對全廠性的行政電話、IP地址、軟件權限的變更管理進行了規定,對于各生產廠、部內部使用的指令電話、調度電話、工業電視等通信系統的功能、數據變更未納入公司管理程序,集中管理。
1.2硬件
公司通信系統硬件設備的變更,主要包括:通信設備的新增、拆除、移位、結構調整等。目前均參照公司管理程序執行。近2年各單元變更申請數量大約為25件。而通信系統硬件部分的變更,也是現階段通信系統變更的主要內容。
2變更因素分析
綜合上述公司通信系統變更管理的現狀,有以下一些原因或因素造成了這些變更的發生:在軟件變更方面,主要有以下的幾點因素所致:第一,用戶生產工藝、產線流程等變更,導致軟件系統結構、功能的變更。第二,公司各廠、部組織機構、辦公地點、人員配置的變更等,導致使用權限的變更。第三,供應商提供服務的變更。此種變更發生幾率很小。在硬件變更方面,縱觀近二年的通信系統變更申請情況,存在的主要因素有如下幾點:其一,設計不夠完善。其主要體現在工程建設期間終端布點的缺失、設備選型與實際環境和工藝條件的不符、設備安裝位置與實際需求不符等。如90%的電話類變更都是由于工程建設期間終端布點缺失所致;近30%的視頻類變更是由于設備安裝位置與實際需求不符而提出的。其二,需求提出不明確。系統搭建前期,由于用戶對系統整體功能認識的不全面,或是理解上的偏差,導致其需求提出的可行性、完整性存在問題。其主要體現在大量的新增接入點、監控點需求。其三,使用環境的變化。在系統穩定運行一段時間后,可能會出現由于關聯系統的軟、硬件設施發生變化而被迫發生變更的情況。
3建議措施
2遠方監控系統
沅陵遠方集控計算機監控系統采用北京中水科技有限公司開發的全開放、分層分布式H9000V4.0系統由一(兩)套數據采集服務器群、兩臺操作員站、一臺工程師站、一臺培訓工作站、一臺語音報警站、一臺報表服務器、兩臺遠動工作站、一臺廠內通信工作站(用于基地內通信)和兩臺Ⅰ區核心交換機組成。集控側監控系統同樣采用雙冗余配置并與電廠側監控系統在功能上完全對等且互為備用,形成一套完整的監控系統。沅陵基地監控網通過PTN及光纖直連兩個1000Mb不同的通信通道與鳳灘廠區的監控計算機系統通信,預留1000MbSDH通道為應急冷備用通道,形成完整監控網,控制以沅陵基地的系統為主,前方的系統備用,實施遠程監視與控制。根據電監會安全[2006]34號文《電監會關于主機加固的規定》,電廠監控系統等關鍵應用系統的主服務器,以及網絡邊界處的通信網關、WEB服務器等,應該使用安全加固的操作系統,采用專用軟件強化操作系統訪問控制能力。故本期共配置了5套操作系統加固軟件以滿足系統安全防護的要求。遠方監控系統沒有采用傳統的規約打包式傳輸方式,而采取沅陵調度大樓控制終端直接與電廠側現地控制單元通訊的“直采直送”方式,將遠程控制、采集延時控制在5ms以內,滿足國家電網公司對智能化電廠的數據及時性要求。同時采用雙中心冗余配置對時系統,鳳灘主站、沅陵從站,確保系統時鐘一致性(如圖1~2)。
3系統光纖通信案例分析
遠方集控SDH建設采用NEC的U-NODE設備,建設內容如下:沅陵:沅陵基地配置1套NECU-NODEWBM設備,配置2塊L-16.2光板分別對涼水井變和鳳灘后方,1塊L-1.2光板對鳳灘前方,1塊GBEM板和1塊FEH板。鳳灘:由于鳳灘后方NECU-NODEBBM設備主框插槽已滿,無法新上2.5Gb/s光板,因此本工程在鳳灘后方NECU-NODEBBM設備上配置1個EXT16(2.5Gb/s)擴展(含2塊PSW板的更換)子框和1塊L-16.2光板,以及1塊FEH板。涼水井變:涼水井220kV變現有NECU-NODEWBM設備。
4試驗調試
調度軟交換系統試驗調試工作從2012年12月30日開始,完成了系統功能試驗與網絡可靠性試驗。經過一段時間的試運行,系統各項性能穩定。PTN設備2013年1月22日由由湖南省電力公司信息通信公司信息通信運維中心組織,使用專業網絡測試工具Smartbits600B網絡性能分析儀對PTN傳輸通道性能進行測試(詳見鳳灘電廠沅陵基地至后方機房網絡傳輸通道測試報告)。并與SDH設備的性能進行了比較,從數據上說明了PTN設備在以太網的傳輸效率高于SDH設備。整體試驗達到前期方案要求,沒有出現漏項缺項情況,試驗數據可靠真實。通過聯調試驗,檢驗了SDH、PTN通道的可靠性,二次防護網、調度數據網的穩定性,檢測了PTN及調度數據網等系統各項切換的延時及穩定性,試驗數據滿足要求,SDH、PTN、二次防護網、調度數據網已具備正式投運條件。